Metallurgical and Materials Transactions A

, Volume 39, Issue 8, pp 1847–1856 | Cite as

Phase Stability and Transformations in the Zr2NixCu1−x Amorphous System

  • M.J. Kramer
  • Min Xu
  • Y.Y. Ye
  • D.J. Sordelet
  • J.R. Morris
Symposium: Bulk Metallic Glasses IV

Abstract

Since Ni and Cu differ by only one valence electron, yet have nearly identical atomic sizes (1.27 vs 1.28 Å for Cu and Ni, respectively), the amorphous Zr2NixCu1−x system is ideal for isolating the effects of electronic structure on short- and medium-range order and the concomitant influence of both the structure and order on devitrification pathways. Thermal analysis, time-resolved high-energy X-ray diffraction (HEXRD), and transmission electron microscopy (TEM) were used to follow metastable and stable crystalline phase formation during devitrification. Using HEXRD, we observed that the first devitrification product in the Zr2Ni system is the C16 structure, if oxygen is kept sufficiently low, while the Zr2Cu system forms the C11b structure. For x = 0.25, the initial devitrification involves forming coexisting C11b and C16 phases. When Ni is increased to x ≥ 0.50, the initial devitrification only involves the C16 structure. These results are in complete accord with electronic structure calculations showing that the enthalpy of formation for the C11b phase is favored for x = 0, while enthalpies for C11b and C16 are nearly identical for x = 0.25; the C16 phase has the most negative enthalpy for all compositions in which x > 0.25.

References

  1. 1.
    D.R. Nelson and F. Spaepen: in Solid State Physics, Advances in Research and Applications, H. Ehrenreich and D. Turnbull, eds., Academic Press, Inc., Boston, 1989, vol. 42, pp. 1–90Google Scholar
  2. 2.
    J. Hafner: Phys. Rev. B, 1980, vol. 21 (2), pp. 406–26CrossRefGoogle Scholar
  3. 3.
    Z. Altounian, Guohua Tu, J.O. Strom-Olsen: J. Appl. Phys., 1983, vol. 54 (6), pp. 3111–16CrossRefGoogle Scholar
  4. 4.
    Z. Altounian, G.H. Tu, J.O. Stromolsen: J. Appl. Phys., 1982, vol. 53 (7), pp. 4755–60CrossRefGoogle Scholar
  5. 5.
    A.A. Turchanin, M.A. Turchanin, P.G. Agraval: Metastable, Mechanically Alloyed and Nanocrystalline Materials, Ismanam—2000, 2001, vols. 360–363, pp. 481–86Google Scholar
  6. 6.
    X.H. Lin, W.L. Johnson: J. Appl. Phys., 1995, vol. 78 (11), pp. 6514–19CrossRefGoogle Scholar
  7. 7.
    A. Inoue: Acta Mater., 2000, vol. 48 (1), pp. 279–306CrossRefGoogle Scholar
  8. 8.
    A. Inoue, H. Yoshida, S. Yamaura, H. Kimura, A. Inoue: Mater. Sci. Forum, 2005, vol. 502, pp. 281–86Google Scholar
  9. 9.
    U. Koester, J. Meinhardt, S. Roos, H. Liebertz: Appl. Phys. Lett., 1996, vol. 69 (2), pp. 179–81CrossRefGoogle Scholar
  10. 10.
    A. Inoue, T. Zhang, M.W. Chen, T. Sakurai, J. Saida, M. Matsushita: J. Mater. Res., 2000, vol. 15 (10), pp. 2195–208CrossRefGoogle Scholar
  11. 11.
    T. Egami, Y. Waseda: J. Non-Cryst. Solids, 1984, vol. 64 (1–2), pp. 113–34CrossRefGoogle Scholar
  12. 12.
    C. Liu, W. Chiang, K. Hsieh, Y. Austin Chang: Intermetallics, 2006, vol. 14 (8–9), pp. 1011–13CrossRefGoogle Scholar
  13. 13.
    M. Laridjani, J.F. Sadoc: J. Non-Cryst. Solids, 1988, vol. 106 (1–3), pp. 42–46CrossRefGoogle Scholar
  14. 14.
    F. Paul, R. Frahm: Phys. Rev. B: Condens. Matter, 1990, vol. 42 (17), pp. 10945–49Google Scholar
  15. 15.
    T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu, A.C. Hannon: Intermetallics, 2006, vol. 14 (8–9), pp. 893–97CrossRefGoogle Scholar
  16. 16.
    T. Fukunaga, D. Touya, K. Itoh, T. Otomo, K. Mori, H. Kato, M. Hasegawa, J. Metastable Nanocryst. Mater., 2005, vols. 24–25, pp. 217–20CrossRefGoogle Scholar
  17. 17.
    M.J. Kramer, L. Margulies, A.I. Goldman, P.L. Lee: J. Alloys Compd., 2002, vol. 338 (1–2), pp. 235–41CrossRefGoogle Scholar
  18. 18.
    U. Koster, A. Rudiger, and J. Meinhardt: Quasicryst., Proc. Int. Conf., 6th, Tokyo, 1998, pp. 317–20Google Scholar
  19. 19.
    D.J. Sordelet, X. Yang, E.A. Rozhkova, M.F. Besser, M.J. Kramer: Intermetallics, 2004, vol. 12 (10–11), pp. 1211–17Google Scholar
  20. 20.
    A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report No. LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM, 2004Google Scholar
  21. 21.
    Y. Waseda: The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids, McGraw-Hill International Book Co., New York, NY, 1980, p. 326Google Scholar
  22. 22.
    T. Egami, S. Billinge, J.L. Billinge: Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon Press, New York, NY, 2003, p. 500Google Scholar
  23. 23.
    G. Kresse, J. Hafner: Phys. Rev. B: Condens. Matter, 1993, vol. 47 (1), pp. 558–61Google Scholar
  24. 24.
    G. Kresse, J. Furthmuller: Comput. Mater. Sci., 1996, vol. 6 (1), pp. 15–50CrossRefGoogle Scholar
  25. 25.
    G. Kresse, J. Furthmueller: Phys. Rev. B: Condens. Matter, 1996, vol. 54 (16), pp. 11169–86Google Scholar
  26. 26.
    H.J. Monkhorst, J.D. Pack: Phys. Rev. B, 1976, vol. 13 (12), pp. 5188–92CrossRefGoogle Scholar
  27. 27.
    A. Lee, G. Etherington, C.N.J. Wagner: J. Non-Cryst. Solids, 1984, vols. 61–62, pp. 349–54CrossRefGoogle Scholar
  28. 28.
    J. Saida, M. Kasai, E. Matsubara, A. Inoue: Ann. Chim, 2002, vol. 27 (5), pp. 77–89CrossRefGoogle Scholar
  29. 29.
    Z. Altounian, E. Batalla, J.O. Strom-Olsen, J.L. Walter: J. Appl. Phys., 1987, vol. 61 (1), pp. 149–55CrossRefGoogle Scholar
  30. 30.
    S. Brauer, J.O. Strom-Olsen, M. Sutton, Y.S. Yang, A. Zaluska, G.B. Stephenson, U. Koester: Phys. Rev. B: Condens. Matter, 1992, vol. 45 (14), pp. 7704–15Google Scholar
  31. 31.
    K.H.J. Buschow: J. Appl. Phys., 1981, vol. 52 (5), pp. 3319–23CrossRefGoogle Scholar
  32. 32.
    Z. Altounian, G.H. Tu, J.O. Stromolsen, W.B. Muir: Phys. Rev. B, 1981, vol. 24 (2), pp. 505–09CrossRefGoogle Scholar
  33. 33.
    H.-R. Wang, Y.-F. Ye, J.-Y. Zhang, X.-Y. Teng, G.-H. Min, Z.-Q. Shi, X.-L. Tian: Chin. Phys., 2002, vol. 11 (6), pp. 592–95CrossRefGoogle Scholar
  34. 34.
    H.R. Wang, G.H. Min, X.D. Hui, Y.F. Ye, X.Y. Teng, Z.Q. Shi, J.Y. Zhang: J. Mater. Sci. Lett., 2002, vol. 21 (21), pp. 1705–07CrossRefGoogle Scholar
  35. 35.
    H. Wang, Yu-Fu Deng, Y. Gao, X. Hui, G. Min, Y. Ye, Y. Chen: J. Alloys Compd., 2003, vol. 350 (1–2), pp. 174–77CrossRefGoogle Scholar
  36. 36.
    H. Wang, Y. Gao, X. Hui, G. Min, Y. Chen, Y. Ye: J. Alloys Compd., 2003, vol. 349 (1–2), pp. 129–33CrossRefGoogle Scholar
  37. 37.
    H. Wang, Y. Gao, G. Min, X. Hui, Y. Ye: Phys. Lett. A, 2003, vol. 314 (1–2), pp. 81–87CrossRefGoogle Scholar
  38. 38.
    H. Wang, Y. Gao, G. Min, Y. Ye, Y. Chen, Z. Shi, X. Teng: J. Alloys Compd., 2003, vol. 349 (1–2), pp. 140–44CrossRefGoogle Scholar
  39. 39.
    H. Wang, Y. Gao, Y. Ye, G. Min, Y. Chen, X. Teng: J. Alloys Compd., 2003, vol. 353 (1–2), pp. 200–06CrossRefGoogle Scholar
  40. 40.
    U. Koster, D. Zander, R. Janlewing: Mater. Sci. Forum, 2002, vols. 386–388, pp. 89–98Google Scholar
  41. 41.
    K. Saksl, H. Franz, P. Jovari, K. Klementiev, E. Welter, A. Ehnes, J. Saida, A. Inoue, J.Z. Jiang: Appl. Phys. Lett., 2003, vol. 83 (19), pp. 3924–26CrossRefGoogle Scholar
  42. 42.
    A.L. Greer, I.T. Walker: J. Non-Cryst. Solids, 2003, vol. 317 (1–2), pp. 78–84CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007

Authors and Affiliations

  • M.J. Kramer
    • 1
    • 2
  • Min Xu
    • 1
    • 2
  • Y.Y. Ye
    • 1
  • D.J. Sordelet
    • 1
  • J.R. Morris
    • 3
    • 4
  1. 1.Materials and Engineering Physics ProgramAmes Laboratory (United States Department of Energy)AmesUSA
  2. 2.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  3. 3.Materials Science & Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations