Metallurgical and Materials Transactions A

, Volume 39, Issue 5, pp 976–983 | Cite as

Finding Critical Nucleus in Solid-State Transformations

Symposium: Solid-State Nucleation and Critical Nuclei during First Order Diffusional Phase Transformations


Based on the phase-field total free energy functional and free-end nudged elastic band (NEB) algorithm, a new methodology is developed for finding the saddle-point nucleus in solid-state transformations. Using cubic → tetragonal transformations in both two and three dimensions as examples, we show that the activation energy and critical nucleus configuration along the minimum energy path (MEP) can be determined accurately and efficiently using this new approach. When the elastic energy contribution is dominant, the nucleation process is found to be collective with the critical nucleus consisting of two twin-related variants. When the elastic energy contribution is relatively weak, the critical nucleus consists of a single variant, and the polytwinned structure develops during growth through a stress-induced autocatalytic process. A nontrivial two-variant critical nucleus configuration is observed at an intermediate level of the elastic energy contribution. This general method is applicable to any thermally activated process in anisotropic media, including nucleation of stacking faults and dislocation loops, voids and microcracks, and ferroelectric and ferromagnetic domains. It is able to treat nucleation events involving simultaneously displacive and diffusional components, and heterogeneous nucleation near pre-existing lattice defects.



We acknowledge support by the AFOSR MEANSII (Grant No. FA9550-05-1-0135) and ONR D3D (Grant No. N00014-05-1-0504) programs and the Ohio Supercomputer Center. The work of JL is also supported by Grant No. NSF DMR-0502711.


  1. 1.
    J.W. Cahn, J.E. Hilliard: J. Chem. Phys., 1959, vol. 31, pp. 688–99CrossRefGoogle Scholar
  2. 2.
    J.W. Cahn, and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28, pp. 258–67CrossRefGoogle Scholar
  3. 3.
    J.B. Rundle, W. Klein: Phys. Rev. Lett., 1989, vol. 63, pp. 171–74CrossRefGoogle Scholar
  4. 4.
    J.R. Rice, G.E. Beltz: J. Mech. Phys. Solids, 1994, vol. 42, pp. 333–60CrossRefGoogle Scholar
  5. 5.
    R. Poduri, L.Q. Chen: Acta Mater., 1996, vol. 44, pp. 4253–59CrossRefGoogle Scholar
  6. 6.
    A.C.E. Reid, G.B. Olson, B. Moran: Phase Transitions, 1999, vol. 69, pp. 309–28CrossRefGoogle Scholar
  7. 7.
    A.G. Khachaturyan: Theory of Structural Transformations in Solids, John Wiley & Sons, New York, NY, 1983, pp. 198–212Google Scholar
  8. 8.
    J.R. Rice: J. Mech. Phys. Solids, 1992, vol. 40, pp. 239–71CrossRefGoogle Scholar
  9. 9.
    Y. Wang, L.Q. Chen, and A.G. Khachaturyan: in Computer Simulation in Materials Science—Nano/Meso/Macroscopic Space and Time Scales, H.O. Kirchner, K.P. Kubin, and V. Pontikis, eds., Kluwer Academic Publishers, Dordrecht/Boston/London, 1996, pp. 325–71Google Scholar
  10. 10.
    Y. Wang, L.Q. Chen: Methods in Material Research, John Wiley & Sons. Inc, New York, NY, 2000 pp. 2a.3.1–2a.3.23Google Scholar
  11. 11.
    A. Karma: in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajian, eds. Elsevier, Oxford, United Kingdom, 2001, vol. 7, pp. 6873–86Google Scholar
  12. 12.
    L.Q. Chen: Ann. Rev. Mater. Res., 2002, vol. 32, pp. 113–40CrossRefGoogle Scholar
  13. 13.
    Y.U. Wang, Y.M. Jin, A.G. Khachaturyan: in Handbook of Materials Modeling, Part B: Models, S. Yip, ed., Springer, New York, NY, 2005 pp. 2287–305CrossRefGoogle Scholar
  14. 14.
    Y.A. Chu, B. Moran, G.B. Olson: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1321–31CrossRefGoogle Scholar
  15. 15.
    L. Gránásy, T. Börzsönyi, T. Pusztai: Phys. Rev. Lett., 2003, vol. 88, p. 206105-1–4Google Scholar
  16. 16.
    G. Henkelman, H. Jonsson: J. Chem. Phys., 2000, vol. 113, pp. 9978–85CrossRefGoogle Scholar
  17. 17.
    C. Shen, J. Li, M.J. Mills, Y. Wang: in Integral Materials Modeling, G. Gottstein, ed., Wiley-VCH, Heidelberg, 2007, pp. 243–52CrossRefGoogle Scholar
  18. 18.
    E. Wigner: Trans. Faraday Soc., 1938, vol. 34, pp. 29–41CrossRefGoogle Scholar
  19. 19.
    H. Jonsson, G. Mills, and K.W. Jacobsen: in Classical and Quantum Dynamics in Condensed Phase Simulations, B.J. Berne, G. Ciccotti, and D.F. Coker, eds., World Scientific, NJ, 1998, pp. 385–404Google Scholar
  20. 20.
    G. Mills, H. Jonsson: Phys. Rev. Lett., 1994, vol. 72, pp. 1124–27CrossRefGoogle Scholar
  21. 21.
    G. Mills, H. Jonsson, G.K. Schenter: Surf. Sci., 1995, vol. 324, pp. 305–37CrossRefGoogle Scholar
  22. 22.
    G. Henkelman, B.P. Uberuaga, H. Jonsson: J. Chem. Phys., 2000, vol. 113, pp. 9901–04CrossRefGoogle Scholar
  23. 23.
    T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh: Proc. Nat. Acad. Sci. USA, 2007, vol. 104, pp. 3031–36CrossRefGoogle Scholar
  24. 24.
    J. Li, P.A. Gordon, and T. Zhu: unpublished research, 2007Google Scholar
  25. 25.
    G.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell, R.F. Sekerka: Phys. Rev. E, 1993, vol. 48, pp. 2016–24CrossRefGoogle Scholar
  26. 26.
    M.R. Sorensen, A.F. Voter: J. Chem. Phys., 2000, vol. 112, pp. 9599–606CrossRefGoogle Scholar
  27. 27.
    Y. Wang, A.G. Khachaturyan: Acta Metall. Mater., 1997, vol. 45, pp. 759–73Google Scholar
  28. 28.
    K.C. Russell: in Phase Transformations, H.I. Aaronson, ed., ASM, Metals Park, OH, 1970, pp. 219–68Google Scholar
  29. 29.
    H.I. Aaronson, J.K. Lee: in Lectures on the Theory of Phase Transformations, H.I. Aaronson, ed., TMS, Warrendale, PA, 1999, pp. 165–229Google Scholar
  30. 30.
    J. Li: MRS Bull., 2007, vol. 32, pp. 151–59Google Scholar
  31. 31.
    S.N. Luo, L.Q. Zheng, A. Strachan, D.C. Swift: J. Chem. Phys., 2007, vol. 126, pp. 034505-1–7Google Scholar
  32. 32.
    Y. Wang, L.Q. Chen, A.G. Khachaturyan: in Solid-Solid Phase Transformations, W.C. Johnson, J.M. Howe, D.E. Laughlin, W.A. Soffa, eds., TMS, Warrendale, PA, 1994, pp. 245–65Google Scholar
  33. 33.
    Y. Wang, H.Y. Wang, L.Q. Chen, A.G. Khachaturyan: J. Am. Ceram. Soc., 1995, vol. 78, pp. 657–61CrossRefGoogle Scholar
  34. 34.
    Y. Le Bouar, A. Loiseau, A.G. Khachaturyan: Acta Mater., 1998, vol. 46, pp. 2777–88CrossRefGoogle Scholar
  35. 35.
    Y.H. Wen, Y. Wang, L.Q. Chen: Philos. Mag. A, 2000, vol. 80, pp. 1967–82CrossRefGoogle Scholar
  36. 36.
    H.Y. Wang, Y.Z. Wang, T. Tsakalakos, S. Semenovskaya, A.G. Khachaturyan: Philos. Mag. A, 1996, vol. 74, pp. 1407–20CrossRefGoogle Scholar
  37. 37.
    K. Binder: Rep. Progr. Phys., 1987, vol. 50, pp. 783–859CrossRefGoogle Scholar
  38. 38.
    J.P. Simmons, C. Shen, Y. Wang: Scripta Mater., 2000, vol. 43, pp. 935–42CrossRefGoogle Scholar
  39. 39.
    C. Shen, J.P. Simmons, Y. Wang: Acta Mater, 2006, vol. 54, pp. 5617–30CrossRefGoogle Scholar
  40. 40.
    C. Shen, J.P. Simmons, Y. Wang: Acta Mater, 2007, vol. 55, pp. 1457–66CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations