Dynamic Effects in Hopkinson Bar Four-Point Bend Fracture

  • Fengchun Jiang
  • Kenneth S. Vecchio
Symposium: Dynamic Behavior of Materials


Hopkinson bar techniques have played an important role in the study of high-rate deformation and fracture behavior of materials. In the current work, a split Hopkinson pressure bar was developed for dynamic four-point bend fracture testing, referred to as a “two-bar (incident and transmitted bars)/four-point” (2-bar/4-pt) bend test. To further understand some fundamental issues regarding stress wave propagation in this 2-bar/4-pt bend testing system, dynamic fracture tests were performed in pulse-shaped and unshaped pulse testing conditions. The effect of the pulse shaper on the incident pulse characteristics (rise time and duration), specimen’s dynamic response (load and loading point displacement), crack initiation time and stress-state equilibrium were investigated experimentally in the current work. The present results show that stress state equilibrium can be achieved prior to fracture initiation in notched and precracked specimens. In the pulse-shaped bending test, the specimen is more likely to attain stress-state equilibrium than in an unshaped incident pulse test. The crack initiation time was extended and the time required for attaining stress equilibrium was reduced by pulse shaping due to the tailored incident pulse having a longer rise time, which ensures that stress equilibrium is achieved prior to crack initiation.


Stress Wave Fracture Test Incident Pulse Bend Specimen Dynamic Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.S. Costin, J. Duffy, L.B. Freund: ASTM STP627, ASTM, Philadelphia, PA, 1977, pp. 301–18Google Scholar
  2. 2.
    X. Yuanming, R. Shiguo, Y. Baochang: Eng. Fract. Mech., 1994, vol. 48, pp. 17–24CrossRefGoogle Scholar
  3. 3.
    D.M. Owen et al.: Int. J. Fracture, 1998, vol. 90, pp. 153–74CrossRefGoogle Scholar
  4. 4.
    S. Rizal, H. Homma: Int. J. Impact Eng., 2000, vol. 24, pp. 69–83CrossRefGoogle Scholar
  5. 5.
    G. Weisbrod, D. Rittel: Int. J. Fract., 2000, vol. 104, pp. 89–103CrossRefGoogle Scholar
  6. 6.
    H. Stroppe, R. Clos, U. Schreppel: Nucl. Eng. Design, 1992, vol. 137, pp. 315–21CrossRefGoogle Scholar
  7. 7.
    V.K. Srivastava, K. Maile: Compos. Sci. Technol., 2004, vol. 64, pp. 1209–17CrossRefGoogle Scholar
  8. 8.
    A.G. Dutton, R.A.W. Mines: Int. J. Fract., 1991, vol. 51, pp. 87–206Google Scholar
  9. 9.
    L. Rubio, J. Ferandez-Saez, C. Navarro: Exper. Mech., 2002, vol. 43, pp. 379–86CrossRefGoogle Scholar
  10. 10.
    C. Bacon, J. Farm, J.L. Lataillade: Exper. Mech., 1994, vol. 34, pp. 217–22CrossRefGoogle Scholar
  11. 11.
    M.A. Irfan, V. Prakash: Int. J. Solids Struct., 2000, vol. 37, pp. 4477–4507CrossRefGoogle Scholar
  12. 12.
    R.P. Singh, V. Parameswaran: Opt. Lasers Eng., 2003, 40, pp. 289–306CrossRefGoogle Scholar
  13. 13.
    X.-F. Wu, Y.A. Dzenis: Polymer Compos., 2005, vol. 26, pp. 165–80CrossRefGoogle Scholar
  14. 14.
    K. Tanaka, T. Kagatsume: Bull. JSME, 1980, vol. 23, p. 1736Google Scholar
  15. 15.
    S.W. Park, M. Zhou: Exper. Mech., 1999, vol. 39, pp. 287–94CrossRefGoogle Scholar
  16. 16.
    S.N. Nwosu, D. Hui, P.K. Dutta: Compos.: Part B, 2003, vol. 34, pp. 303–16CrossRefGoogle Scholar
  17. 17.
    F. Jiang, K.S. Vecchio, A. Rohatgi: Int. J. Fract., 2004, vol. 126, pp. 143–64CrossRefGoogle Scholar
  18. 18.
    F. Zhou, J.-F. Molinari, Y. Li: Eng. Fract. Mech., 2004, vol. 71, pp. 1357–78CrossRefGoogle Scholar
  19. 19.
    T. Weerasooriya, P. Moy, D. Casem, M. Cheng, W. Chen: J. Am. Ceram. Soc., 2006, vol. 89, pp. 990–95CrossRefGoogle Scholar
  20. 20.
    J. Klepaczko: in Mechanical Properties at High Rates of Strain, J. Harding, ed., The Institute of Physics, Bristol, United Kingdom, 1979, pp. 201–14Google Scholar
  21. 21.
    J.R. Klepaczko: J. Eng. Mater. Technol., 1982, vol. 104, pp. 29–35CrossRefGoogle Scholar
  22. 22.
    R.S.J. Corran, F.G. Benitez, J. Harding, C. Ruiz, and T. Nojima: in Application of Fracture Mechanics to Materials and Structures, G.C. Sih, E. Sommer, and W. Dahl, eds., Martinus Nijhoff Publishers, The Hague/Boston/Lancaster, 1983, pp. 443–54Google Scholar
  23. 23.
    R.S.J. Corran, F.G. Benitez, J. Harding, and C. Ruiz: in Mechanical Properties at High Rates of Strain, J. Harding, ed., The Institute of Physics, Bristol, United Kingdom, 1984, pp. 253–60Google Scholar
  24. 24.
    M.N. Bassim, M.R. Bayoumi, T.R. Hsu, and J.R. Matthews.: J. Test. Eval., 1986, vol. 14, pp. 229–35Google Scholar
  25. 25.
    C.T. Sun and C. Han: Compos.: Part B, 2004, vol. 35, pp. 647–55CrossRefGoogle Scholar
  26. 26.
    Z.X. Zhang, S.Q. Kou, J. Yu, Y. Yu, L.G. Jiang, P.-A Lindqvist: Int. J. Rock Mech. Min. Sci., 1999, vol. 36, pp. 597–611CrossRefGoogle Scholar
  27. 27.
    Z.X. Zhang, J. Yu, S.Q. Kou, P.-A. Lindqvist: Int. J. Rock Mech. Min. Sci., 2001, vol. 38, pp. 211–25CrossRefGoogle Scholar
  28. 28.
    H. Maigre, D. Rittel: Int. J. Fract., 1995, vol. 73, pp. 67–79CrossRefGoogle Scholar
  29. 29.
    K. Kishida, T. Yokoyama, and M. Nakano: in Mechanical Properties at High Rates of Strain, J. Harding, ed., The Institute of Physics, Bristol and London, 1984, pp. 221–28Google Scholar
  30. 30.
    T. Yokoyama: J. Press. Vess. Technol., 1993, vol. 115, pp. 389–97CrossRefGoogle Scholar
  31. 31.
    M. Todo, K. Takahashi: Eng. Sci. Rep., Kyushu Univ., 1998, vol. 20, pp. 267–73Google Scholar
  32. 32.
    T. Kusaka, T. Kurokawa, M. Hojo, S. Ochiai: Key Eng. Mater., 1998, vols. 141–143, pp. 477–98Google Scholar
  33. 33.
    S. Suresh, C.F. Shih, A. Morrone, N.P. O’Dowd: J. Am. Ceram. Soc., 1990, vol. 73, pp. 1257–67CrossRefGoogle Scholar
  34. 34.
    J. Zhang, J.J. Lewandowski: J. Mater. Sci., 1997, vol. 32, pp. 3851–56CrossRefGoogle Scholar
  35. 35.
    R.H. Martin, B.D. Davidson: Plastic, Rubber Compos., 1999, vol. 28, pp. 401–06Google Scholar
  36. 36.
    Ö. Ünal, V. Dayal: Mater. Sci. Eng. A, 2003, vol. 340, pp. 170–74CrossRefGoogle Scholar
  37. 37.
    Z. Huang, Z. Suo, G. Xu, J. He, J.H. Pre´vost, N. Sukumar: Eng. Fract. Mech., 2005, vol. 72, pp. 2584–2601CrossRefGoogle Scholar
  38. 38.
    W. Mekky, P.S. Nicholson: Eng. Fract. Mech., 2006, vol. 73, pp. 571–82CrossRefGoogle Scholar
  39. 39.
    R.K. Nalla, J.H. Kiney, R.O. Ritchie: Nat. Mater., 2003, vol. 2, pp. 164–68CrossRefGoogle Scholar
  40. 40.
    Y.-R. Im, B.-J. Lee, Y.J. Oh, J.H. Hong, H.-C. Lee: J. Nucl. Mater., 2004, vol. 324, pp. 33–40CrossRefGoogle Scholar
  41. 41.
    S. Nemat-Nasser, J.B. Isaacs, J.E. Starrett: Proc. R. Soc. London, A, 1991, vol. 435, pp. 371–91CrossRefGoogle Scholar
  42. 42.
    H.E. Boyer and T.L. Gall: Metals Handbook, 9th ed., ASM, Materials Park, OH, pp. 190–207; Ceram. Soc., 1994, vol. 77, pp. 263–67Google Scholar
  43. 43.
    L. Ninan, J. Tsai, C.T. Sun: Int. J. Impact Eng., 2001, vol. 25, pp. 291–313CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of NanoEngineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations