Metallurgical and Materials Transactions A

, Volume 38, Issue 10, pp 2442–2454 | Cite as

Transmission Electron Microscopy Characterization of the Bake-Hardening Behavior of Transformation-Induced Plasticity and Dual-Phase Steels

Article

Abstract

The effect of prestraining (PS) and bake hardening (BH) on the microstructures and mechanical properties has been studied in transformation-induced plasticity (TRIP) and dual-phase (DP) steels after intercritical annealing. The DP steel showed an increase in the yield strength and the appearance of the upper and lower yield points after a single BH treatment as compared with the as-received condition, whereas the mechanical properties of the TRIP steel remained unchanged. This difference appears to be because of the formation of plastic deformation zones with high dislocation density around the “as-quenched” martensite in the DP steel, which allowed carbon to pin these dislocations, which, in turn, increased the yield strength. It was found for both steels that the BH behavior depends on the dislocation rearrangement in ferrite with the formation of cell, microbands, and shear band structures after PS. The strain-induced transformation of retained austenite to martensite in the TRIP steel contributes to the formation of a complex dislocation structure.

Notes

Acknowledgments

The authors acknowledge the support of the Ford Motor Company and the Australia Research Council (ARC) Linkage Scheme. One of the authors (PDH) also acknowledges the support of an ARC Federation fellowship. In addition, the authors acknowledge the assistance of Mr. B. Clarke with tensile testing.

References

  1. 1.
    Y. Sakuma, O. Matsumura, H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98Google Scholar
  2. 2.
    R.G. Davies: Metall. Trans. A, 1978, vol. 9A, pp. 41–52Google Scholar
  3. 3.
    A.H. Nakagawa, G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 831–40Google Scholar
  4. 4.
    O. Matsumura, Y. Sakuma, H. Takechi: Trans. ISIJ, 1987, vol. 27, pp. 570–79Google Scholar
  5. 5.
    M.S. Rashid: Proc. AIME Symp., TMS-AIME, Warrendale, PA, 1994, vol. 244, pp. 1–24Google Scholar
  6. 6.
    O. Matsumura, Y. Sakuma, H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301–06CrossRefGoogle Scholar
  7. 7.
    G.R. Speich, V.A. Demarest: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28Google Scholar
  8. 8.
    V.F. Zackay, E.R. Parker, D. Fahr, R. Bush: Trans. ASM, 1967, vol. 60, pp. 252–59Google Scholar
  9. 9.
    L.J. Baker, S.R. Daniel, J.D. Parker: Mater. Sci. Technol., 2002, vol. 18, pp. 355–68CrossRefGoogle Scholar
  10. 10.
    A.H. Cottrell, B.A. Bilby: Proc. Phys. Soc., 1949, vol. A62, pp. 49–62Google Scholar
  11. 11.
    T. Senuma: ISIJ Int., 2001, vol. 41, pp. 520–32Google Scholar
  12. 12.
    O.M. Faral and T. Hourman: Proc. 41st MWSP Conf., ISS, Baltimore, MD, 1999, vol. XXXVII, pp. 253–64Google Scholar
  13. 13.
    B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303CrossRefGoogle Scholar
  14. 14.
    M. Kinoshita, A. Nishimoto: CAMP-ISIJ, 1990, vol. 3, pp. 1780–85Google Scholar
  15. 15.
    T. Furukawa, H. Mrikawa, M. Endo, H. Takechi, K. Koyama, O. Akisue, T. Yamada: Trans. ISIJ, 1981, vol. 21, pp. 812–18Google Scholar
  16. 16.
    T. Waterschoot, A.K. De, S. Vandeputte, B.C. De Cooman: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 781–91Google Scholar
  17. 17.
    T. Huper, S. Endo, N. Ishikawa, K. Osawa: ISIJ Int., 1999, vol. 39, pp. 288–94Google Scholar
  18. 18.
    A.K. De, S. Vandeputte, B.C. De Cooman: Scripta Mater., 2001, vol. 44, pp. 695–700CrossRefGoogle Scholar
  19. 19.
    D. Kalish, M. Cohen: Mater. Sci. Eng., 1970, vol. 6, pp. 156–66CrossRefGoogle Scholar
  20. 20.
    A.K. De, K. De Blauwe, S. Vandeputte, B.C. De Cooman: J. Alloys Compd., 2000, vol. 310, pp. 405–10CrossRefGoogle Scholar
  21. 21.
    G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill, New York, NY, 2001, p. 287Google Scholar
  22. 22.
    B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, London, 1978, pp. 411–15Google Scholar
  23. 23.
    M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29, pp. 1011–16CrossRefGoogle Scholar
  24. 24.
    P.B. Hirsch, R.B. Nicholson, A. Howie, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals, Butterworth and Co., London, 1965, pp. 51–54Google Scholar
  25. 25.
    K. Sakata, S. Satoh, T. Kato, and O. Hashimoto: ISIJ Int., 1994, pp. 279–88Google Scholar
  26. 26.
    A.K. De, S. Vandeputte, B.C. De Cooman: Scripta Mater., 1999, vol. 41, pp. 831–37CrossRefGoogle Scholar
  27. 27.
    A.K. De, K. De Blauwe, S. Vandeputte, B.C. De Cooman: J. Alloys Compd., 2000, vol. 310, pp. 405–10CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007

Authors and Affiliations

  1. 1.Department of Materials EngineeringMonash UniversityClaytonAustralia
  2. 2.Center for Material and Fiber InnovationDeakin UniversityGeelongAustralia
  3. 3.School of Mechanical, Material and Mechatronics EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations