Metallurgical and Materials Transactions A

, Volume 38, Issue 5, pp 1022–1031 | Cite as

Role of Crystallographic Texture in Hydrogen-Induced Cracking of Low Carbon Steels for Sour Service Piping

  • V. Venegas
  • F. CaleyoEmail author
  • J.M. Hallen
  • T. Baudin
  • R. Penelle

This work presents the results of ongoing investigations aimed at determining the influence of crystallographic texture on hydrogen-induced cracking (HIC) in low carbon steels for sour service piping. Electron backscatter diffraction (EBSD) and X-ray texture measurements have been performed on HIC samples of API 5L X46 and ASTM A106 steels. The results obtained in this study show that the resistance to HIC of low carbon steels for sour service piping could be improved through crystallographic texture control and grain boundary engineering. Controlled rolling schedules can be proposed in order to induce a crystallographic texture dominated by the {112}//ND, {111}//ND, and {011}//ND fibers, where ND is the sample normal direction. Such a texture is expected to decrease significantly the steel susceptibility to HIC by (1) reducing the number of available transgranular and intergranular low resistance cleavage paths provided by the {001}//ND oriented grains, (2) reducing the probability of crack coalescence and stepwise HIC propagation through large HIC-induced plastic strain, and (3) increasing the number of high resistance intergranular crack paths provided by coincidence site lattice (CSL) boundaries and low-angle boundaries between grains with orientation within the {111}//ND texture fiber.


Orientation Distribution Function Coincidence Site Lattice Rolling Plane Crack Coalescence Coincidence Site Lattice Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank D. Solas and E.S. Valladares for measuring the X-ray pole figures of the investigated steels and for processing the OIM data, respectively.


  1. 1.
    M. lboujdaini: Uhlig’s Corrosion Handbook, 2nd ed., R. Winston Revie, ed., John Wiley & Sons Inc., New York, NY, 2000, pp. 205–20Google Scholar
  2. 2.
    T. Hara, H. Asahi, H. Ogawa: Corrosion, 2004, vol. 60 (12), pp. 1113–21CrossRefGoogle Scholar
  3. 3.
    E. Miyoshi, T. Tanaka, F. Terasaki, A. Ikeda, J. Eng. Ind., 1976, vol. 11, pp. 1221–30Google Scholar
  4. 4.
    J.I. Verdeja, J. Asensio, J.A. Pero-Sanz: Mater. Charact., 2003, vol. 50, pp. 81–86CrossRefGoogle Scholar
  5. 5.
    T.G. Oakwood: Metal Handbook, 9th ed., vol. 13, Corrosion, ASM INTERNATIONAL, Materials Park, OH, 1987, pp. 531–46Google Scholar
  6. 6.
    R.D. Kane and M.S. Cayard: Review of Publisher Literature on Wet H2S Cracking of Steels through 1989, NACE International Publication 8X294, 2003 ed., NACE, Houston, TX, 2003Google Scholar
  7. 7.
    V. Randle, O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Francis & Taylor, London, 2003, pp. 3–58Google Scholar
  8. 8.
    A.J. Wilkinson: Phil. Mag. A, 2001, vol. 81 (4), pp. 841–55CrossRefGoogle Scholar
  9. 9.
    U. Krupp, O. Duber, H.J. Christ, B. Kunkler, A. Schick, C.P. Fritzen: J. Microsc., 2003, vol. 213 (3), pp. 313–20CrossRefGoogle Scholar
  10. 10.
    R.K. Ray, J.J. Jonas, M.P. Butrón-Guillén, J. Savoie: ISIJ Int., 1994, vol. 34, pp. 927–42Google Scholar
  11. 11.
    S.P. Lynch: in Hydrogen Effects on Materials Behavior and Corrosion Deformation Interaction, N.R. Moody, A.W. Thompson, R.E. Ricker, G.W. Was, R.H. Jones, eds., TMS, Warrendale, PA, 2003, pp. 440–66Google Scholar
  12. 12.
    OIM Users Manual, 2001 ed., TexSeM Laboratories Inc., Provo, UT, 2001, pp. 48–49Google Scholar
  13. 13.
    Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACE Standard Test Method TM0284-96, NACE, Houston, TX, 1997, pp. 1–10Google Scholar
  14. 14.
    K. Pawlick: Phys. Status Solidi, 1986, vol. B134, pp. 477–83Google Scholar
  15. 15.
    Y.Z. Wang, J.D. Atkinson, R. Akid, R.N. Parkins: Fatigue Fract. Eng. Mater. Struct., 1996, vol. 19, pp. 427–39CrossRefGoogle Scholar
  16. 16.
    D. Gross, T. Seelig: Fracture Mechanics, Springer-Verlag, Berlin, 2006, pp. 64–87Google Scholar
  17. 17.
    Y.P. Li, C.H. Yang: J. Mech. Mater. Struct., 2006, vol. 1 (1), pp. 147–62. CrossRefGoogle Scholar
  18. 18.
    V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, R. Penelle: Scripta Mater., 2005, vol. 52, pp. 147–52CrossRefGoogle Scholar
  19. 19.
    M.A. Othon, L.N. Brewer, L.M. Young, T.M. Angeliu: Microsc. Microanal., 2002, vol. 8 (S02), pp. 698–99Google Scholar
  20. 20.
    C.C. Yang, A.D. Rollet, W.W. Mullins: Scripta Mater., 2001, vol. 44, pp. 2735–74CrossRefGoogle Scholar
  21. 21.
    A. Haldar, R.K. Ray: Mater. Sci. Eng. A, 2005, vol. A391 (1–2), pp. 402–07Google Scholar

Copyright information


Authors and Affiliations

  • V. Venegas
    • 1
  • F. Caleyo
    • 1
    Email author
  • J.M. Hallen
    • 1
  • T. Baudin
    • 2
  • R. Penelle
    • 2
  1. 1.Departamento de Ingeniería MetalúrgicaIPN-ESIQIEMéxicoMéxico
  2. 2.Laboratoire de Physico-Chimie de l’Etat SolideICMMO, UMR CNRS 8182Orsay, CedexFrance

Personalised recommendations