Metallurgical and Materials Transactions A

, Volume 38, Issue 3, pp 570–583 | Cite as

The Effect of Anvil Geometry and Welding Energy on Microstructures in Ultrasonic Spot Welds of AA6111-T4

  • R. JahnEmail author
  • R. Cooper
  • D. Wilkosz

The formation of ultrasonic spot welds of AA6111-T4 has been investigated using a single-transducer unidirectional wedge-reed welder. The evolution of weld microstructures and weld strength due to anvil cap geometry and welding energy was studied. The variations in lap-shear failure load and weld microstructures as a function of welding energy were only slightly influenced by the changes in the anvil cap geometry. Weld failure in lap-shear tensile tests occurs by interface fracture for low energy welds and by button formation for high energy welds. Initially, microwelds or weld islands several microns in diameter are generated presumably at asperities of the two pieces being joined. As the welding energy increases, the weld interface can change from a planar to a wavy morphology and the weld strength increases. Deformation wakes and bifurcation are ubiquitous in strong welds. Microporosity is observed at the periphery of growing weld islands and along the flow lines associated with the wavy deformation microstructures. Grain growth occurs inside the weld zone after isothermal annealing. However, the porous microstructure at the weld interface is not affected by isothermal annealing. Ultrasonic spot welding of AA6111-T4 aluminum was found to be insensitive to variations in anvil cap size and the knurl patterns investigated in this research.


Welding Isothermal Annealing Weld Interface Weld Strength Weld Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Mr. L. Reatherford for the effort in custom designed anvil post and Drs. S. Ward, W. Donlon, and J.E. Allison for in-depth discussion of the manuscript. This research is supported, in part, by NIST ATP Cooperative Agreement No. 70NANB3H3015 of the United States of America.


  1. 1.
    E. Lara-Curzio, L. Riester, and R. Jahn: Oak Ridge National Laboratory, Oak Ridge, TN, unpublished research, 2001Google Scholar
  2. 2.
    J.E. Krzanowski: IEEE Trans. Compon., Hybrids Manufact. Technol., 1990, vol. 13 (1), pp. 176–81CrossRefGoogle Scholar
  3. 3.
    N. Murdeshwar, J.E. Krzanowski: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2663–71CrossRefGoogle Scholar
  4. 4.
    Y.R. Jeng, J.H. Horng: J. Tribol., 2001, vol. 123 (4), pp. 725–31CrossRefGoogle Scholar
  5. 5.
    Y. Gao, C. Doumanidis: ASME J. Manufacturing Sci. Eng., 2002, vol. 124 (2), pp. 426–34CrossRefGoogle Scholar
  6. 6.
    E.A. Neppiras: Ultrasonics, 1965, pp. 128–35Google Scholar
  7. 7.
    H.P.C. Daniels: Ultrasonics, 1965, pp. 190–96Google Scholar
  8. 8.
    J.H. Horng: ASME J. Tribol., 1998, vol. 121 pp. 82–89Google Scholar
  9. 9.
    M.A. Zlatom, A.A. Kozhushko: Sov. Phys.-Techn. Phys., 1982, vol. 27 (2), pp. 212–14Google Scholar
  10. 10.
    J.D. Colvin, M. Legrand, B.A. Remington, G. Schurtz, S.V. Weber: J. Appl. Phys., 2003, vol. 93 (9), pp. 5287–5301CrossRefGoogle Scholar
  11. 11.
    Q. Han, C.L. Xu, G.R. Romanoski, D.T. Hoelzer, M.M. Menon, and R.P. Taleyarkhan: 2003 LDRD Seed Funding Project Report No. 3210–2038, Oak Ridge National Laboratory, Oak Ridge, TN, 2003Google Scholar
  12. 12.
    M.R. Arnison, K.G. Larkin, C.J.R. Sheppard, N.I. Smith, C.J. Cogswell: J. Microsc., 2004, vol. 214 (1), pp. 7–12CrossRefGoogle Scholar
  13. 13.
    J.B. Jones and J.J. Powers: Weld. J., 1956, pp. 761–66Google Scholar
  14. 14.
    S.T.J. Yu and R. Jahn: TMS Proc. Modeling the Performance of Engineering Structural Materials III, TMS, Warrendale, PA, 2002, pp. 385–91Google Scholar
  15. 15.
    A. Brodyanski, C. Born, M. Kopnarski: Appl. Surf. Sci., 2005, vol. 252 pp. 94–97CrossRefGoogle Scholar
  16. 16.
    J. Woltersdorf, E. Pippel, E. Roeder, G. Wagner, J. Wagner: Physica Status Solidi A, 1995, vol. 150 (1), pp. 307–17CrossRefGoogle Scholar
  17. 17.
    T. Watanabe, A. Yanagisawa, S. Sunaga: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1107–11CrossRefGoogle Scholar
  18. 18.
    J.E. Krzanowski, N. Murdeshwar: J. Electron. Mater., 1990, vol. 19 (9), pp. 919–28Google Scholar
  19. 19.
    E.A. Kenik, R. Jahn: Microsc. Microanal., 2003, vol. 9 pp. 720–21Google Scholar
  20. 20.
    S.M. Allameh, C. Mercer, D. Popoola, W.O. Soboyejo: J. Eng. Mater. Technol., 2005, vol. 127 (1), pp. 65–74CrossRefGoogle Scholar
  21. 21.
    A.A. Bahrani, T.J. Black, B. Crossland: Proc. R. Soc. Ser. A, 1966, vol. 296 (1445) pp. 123–36Google Scholar
  22. 22.
    J.N. Hunt: Phil. Mag. (Ser. 8), 1968, vol. 17 (148), pp. 669–80Google Scholar
  23. 23.
    G.R. Cowan, O.R. Bergmann, A.H. Holtzman: Metall. Trans., 1971, vol. 2, pp. 3145–55Google Scholar
  24. 24.
    J.L. Robinson: Phil. Mag., 1975, vol. 31 (3), pp. 587–97Google Scholar
  25. 25.
    J.L. Robinson: J. Appl. Phys., 1977, vol. 48 (6), pp. 2202–07CrossRefGoogle Scholar
  26. 26.
    S.V. Bazdenkov, V.F. Demichev, D.K. Morozov, O.P. Pogutse: Combust. Explos. Shock Waves, 1985, vol. 21 (1), pp. 124–30CrossRefGoogle Scholar
  27. 27.
    V.M. Kornev, I.V. Yakovlev: Combust. Explos. Shock Waves, 1984, vol. 20 (2), pp. 204–07CrossRefGoogle Scholar
  28. 28.
    V.M. Kornev and I.V. Yakovlev: Metall. Appl. Shock-Wave and High-Strain-Rate Phenomena, 1986, pp. 961–67Google Scholar
  29. 29.
    D. Jaramillo, V.A. Szecket, O.T. Inal: Mater. Sci. Eng., 1987, vol. 91 (7), pp. 217–22Google Scholar
  30. 30.
    A. Chiba, M. Nishida, Y. Morizono: Mater. Sci. Forum, 2004, vols. 465–466, pp. 465–74CrossRefGoogle Scholar
  31. 31.
    C.H. Oxford, P.E.J. Flewitt: Metall. Trans. A, 1977, vol. 8 (5), pp. 741–50. Google Scholar
  32. 32.
    S.K. Salwan: India Weld. Res. Inst., 1987, vol. 8 (3), pp. 49–52Google Scholar
  33. 33.
    F. Grignon, D. Benson, K.S. Vecchio, M.A. Meyers: Int. J. Impact Eng., 2004, vol. 30 (10), pp. 1333–51CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Ford Research and Advanced EngineeringFord Motor CompanyDearbornUSA

Personalised recommendations