Metallurgical and Materials Transactions A

, Volume 38, Issue 3, pp 450–463

The Effect of Multiple Deformations on the Formation of Ultrafine Grained Steels

  • Hossein Beladi
  • Georgina L. Kelly
  • Peter D. Hodgson

A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (εC,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on εC,UFF. The multiple deformations in the nonrecrystallization region significantly reduced εC,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.


  1. 1.
    R.K. Gibbs, P.D. Hodgson, and B.A. Parker: Morris E. Fine Symp., P.K. Liaw, J.R. Weertman, H.L. Marcus, and J.S. Santner, eds., TMS, Warrendale, PA, 1991, pp. 73–81Google Scholar
  2. 2.
    P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: United States Patent No. 6,027,587, Feb. 22, 2000Google Scholar
  3. 3.
    H. Yada, Y. Matsumura, and K. Nakajima: United States Patent No. 4,466,842, Aug. 21, 1984Google Scholar
  4. 4.
    P.J. Hurley: Ph.D. Thesis, Monash University, Melbourne, 1999Google Scholar
  5. 5.
    M.R. Hickson, R.K. Gibbs, P.D. Hodgson: ISIJ Int., 1999, 39:1176–80Google Scholar
  6. 6.
    Choo W.Y., Um K.K., Lee J.S., Seo D.H., Choi J.K.: 2001. In: S. Takaki, and T. Maki (Eds) Int. Symp. on Ultrafine Grained Steels (ISUGS 2001). Fukuoka, Japan, pp. 2–9Google Scholar
  7. 7.
    P.D. Hodgson, M.R. Hickson, R.K. Gibbs: Scripta Mater., 1999, 40:1179–84CrossRefGoogle Scholar
  8. 8.
    H. Beladi, G.L. Kelly, P.D. Hodgson: Mater. Trans., 2004, 45 (7):1–5CrossRefGoogle Scholar
  9. 9.
    H. Beladi, G.L. Kelly, A. Shokouhi, P.D. Hodgson: Mater. Sci. Eng. A, 2004, 367:152–61CrossRefGoogle Scholar
  10. 10.
    Adachi Y., Hinotani S.: 2001 In: Takaki S., Maki T. (Eds) Int. Symp. on Ultrafine Grained Steels (ISUGS 2001), Fukuoka, Japan, pp. 84–87Google Scholar
  11. 11.
    D.S. Fields, W.A. Backofen: Proc. Am. Soc. Test. Mater., 1957, 75:1259–72Google Scholar
  12. 12.
    D.Q. Bai, S. Yue, W.P. Sun, J.J. Jonas: Metall. Mater. Trans. A, 1993, 24A:2151–59Google Scholar
  13. 13.
    A. Zarei-Hanzaki, R. Pandi, S. Yue, P.D. Hodgson: Metall. Trans. A, 1993, 24A:2657–65Google Scholar
  14. 14.
    W. Charnock, J. Nutting: Met. Sci. J., 1967,1:123–27CrossRefGoogle Scholar
  15. 15.
    P.J. Hurley, B.C. Muddle, P.D. Hodgson: Metall. Mater. Trans. A, 2001, 32A:1507–17CrossRefGoogle Scholar
  16. 16.
    P.J. Hurley, B.C. Muddle, P.D. Hodgson: Metall. Mater. Trans. A, 2002, 33A:2985–93CrossRefGoogle Scholar
  17. 17.
    C.R. Killmore, G.R. Harris, and J.G. Williams: Proc. Int. Conf. on HSLA Steels, Wollongong, Australia, 1984, D.P. Dunne and T. Chandra, eds., ASM Location, Wollongong, Australia, 1984, pp. 57–63Google Scholar
  18. 18.
    C.R. Brooks: Principles of the Austenitization of Steels, 1st ed., Elsevier Science, New York, NY, 1992Google Scholar
  19. 19.
    J.G. Speer, S.S. Hansen: Metall. Trans. A, 1989, 20A:25–38Google Scholar
  20. 20.
    K.J. Irvine, F.B. Pickering, T. Gladman: J. Iron Steel Inst., 1967, 205:161–82Google Scholar
  21. 21.
    E.I. Poliak, J.J. Jonas: ISIJ Int., 2003, 43:684–701Google Scholar
  22. 22.
    D.A. Hughes, W.D. Nix: Mater. Sci. Eng. A, 1989, 122:153–72CrossRefGoogle Scholar
  23. 23.
    I. Tamura, H. Sekine, T. Tanaka, C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, 1st ed., Robert Hartnoll Ltd., Bodmin, Cornwall, 1988Google Scholar
  24. 24.
    R. Bengochea, B. Lopez, I. Gutierrez: ISIJ Int., 1999, 39:583–90Google Scholar
  25. 25.
    M. Hatherly: Proc. 6th Int. Conf. on Strength of Metals and Alloys, R.C. Gifkins, ed., Pergamon, Oxford, United Kingdom, 1982, pp. 1181–95Google Scholar
  26. 26.
    I. Tamura: in Thermec’88, I. Tamura, ed., ISIJ, Tokyo, 1988, vol. 1, pp. 1–10Google Scholar
  27. 27.
    M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan, and Y. Higo: ISIJ Int., 1992, vol. 32, pp. 306–15Google Scholar
  28. 28.
    A. Yoshi, M. Fujioka, H. Morikawa, and Y. Onoe: in Thermec’88, I. Tamura, ed., ISIJ, Tokyo, 1988, vol. 2, pp. 799–806Google Scholar
  29. 29.
    R. Priestner, E. de los Rios: Met. Technol., 1980, 7:309–16Google Scholar
  30. 30.
    R.K. Amin and F.B. Pickering: in Thermomechanical Processing of Microalloyed Austenite, A.J. DeArdo, G.A. Ratz and P.J. Wray, eds., TMS-AIME, Warrendale, PA, 1982, pp. 377–403Google Scholar
  31. 31.
    R. Priestner, P.D. Hodgson: Mater. Sci. Technol., 1992, 8:849–54Google Scholar
  32. 32.
    H. Beladi, G.L. Kelly, A. Shokouhi, P.D. Hodgson: Mater. Sci. Eng. A, 2004, 371:343–52CrossRefGoogle Scholar
  33. 33.
    A. Dehghan-Manshadi, H. Beladi, M.R. Barnett, P.D. Hodgson: Mater. Sci. Forum, 2004, 467–470:1163–68.CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  • Hossein Beladi
    • 1
  • Georgina L. Kelly
    • 1
  • Peter D. Hodgson
    • 1
  1. 1.Centre for Material and Fibre InnovationDeakin UniversityGeelongAustralia

Personalised recommendations