Metallurgical and Materials Transactions A

, Volume 38, Issue 2, pp 409–419 | Cite as

Reaction Synthesis of Nickel/Aluminide Multilayer Composites Using Ni and Al Foils: Microstructures, Tensile Properties, and Deformation Behavior

  • Huabin Wang
  • Jiecai Han
  • Shanyi Du
  • Derek O. NorthwoodEmail author


Full-density nickel/aluminide multilayer composites were successfully fabricated by reaction synthesis using Ni and Al foils. The Al is the dominant diffusing species, and Ni2Al3 is the first phase formed during reaction between the Ni and Al foils at 620 °C. The reaction mechanism is such that only Al atoms can diffuse through the Al2O3 films formed on the Al foils, and the Al atoms then transform into Ni2Al3 by reaction with Ni. The Ni and Ni3Al layers in the composites can therefore cooperatively deform through slipping of dislocations in the Ni and Ni3Al layers through the Ni3Al/Ni interfaces. Thus, Ni/Ni3Al multilayer composites exhibit high ultimate tensile strengths and large elongations (1050 MPa and 18.2 pct).


NiAl Ni3Al Intermetallic Layer Al2O3 Film Multilayer Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V.K. Sikka, S.C. Deevi, S. Viswanathan, R.W. Swindeman, M.L. Santella 2000 Intermetallics, 8:1329–37CrossRefGoogle Scholar
  2. 2.
    F.E. Heredia, D.P. Pope 1991 Acta Metall. 39:2017–25CrossRefGoogle Scholar
  3. 3.
    D.P. Pope 1997 Phys. Status Solidi, 160A:481–86Google Scholar
  4. 4.
    K. Aoki, O. Izumi 1978 Trans. Jpn. Inst. Met., 19:203–11Google Scholar
  5. 5.
    E.P. George, C. Liu, D.P. Pope 1997 Phys. Status Solidi, 160A:517–29Google Scholar
  6. 6.
    D.E. Alman, C.P. Dogan, J. Hawk, J.C. Rawers 1995 Metall. Mater. Trans. A, 26A:589–99CrossRefGoogle Scholar
  7. 7.
    J.C. Rawers 1993 Int. J. Self-Propag. High-Temp. Synth., 2:12–24Google Scholar
  8. 8.
    W. Xu, X. Meng, C. Yuan, A.H.W. Ngan, K. Wang, Z. Liu 2000 Mater. Lett. 46:303–08CrossRefGoogle Scholar
  9. 9.
    S. Tixier, P. Boni, H. Van Swygenhoven 1999 Thin Solid Films, 342:188–93CrossRefGoogle Scholar
  10. 10.
    T.S. Dyer, Z.A. Munir 1995 Metall. Mater. Trans. B, 26B:603–10CrossRefGoogle Scholar
  11. 11.
    Y. Li, J. Zhao, G. Zeng, C. Guan, X. He 2004 Mater. Lett., 58:1629–33CrossRefGoogle Scholar
  12. 12.
    D.E. Alman, C.P. Dogan, J. Hawk, J.C. Rawers 1995 Mater. Sci. Eng., A192–A193:624–32Google Scholar
  13. 13.
    P. Zhu, J. Li, C. Liu 1997 Mater. Sci. Eng., A239–A240:532–39Google Scholar
  14. 14.
    K.A. Philpot, Z.A. Munir 1987 J. Mater. Sci, 22:159–69CrossRefGoogle Scholar
  15. 15.
    A.S. Rogachev 1997 Int. J. Self-Propag. High-Temp. Synth., 6:215–24Google Scholar
  16. 16.
    G.K. Dey Sekhar 1997 Metall. Mater. Trans. B, 28B:905–13Google Scholar
  17. 17.
    J. Wong, E.M. Larson, J.B. Holt, P.A. Weide, B. Rupp, R. Frahm 1990 Sci., 249:1406–12CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  • Huabin Wang
    • 1
  • Jiecai Han
    • 2
  • Shanyi Du
    • 2
  • Derek O. Northwood
    • 1
    Email author
  1. 1.Department of Mechanical, Automotive and Materials EngineeringUniversity of WindsorWindsorCanada
  2. 2.Center for Composite MaterialsHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations