# Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel

- 1.8k Downloads
- 114 Citations

## Abstract

An experimental study has been conducted to quantify the effects of martensite plasticity on the mechanical properties of a commercial low-carbon (0.06 wt pct) dual-phase steel. The volume fraction and morphology (banded and more equiaxed) of the martensite second phase were systematically varied by control of the intercritical annealing temperature and the heating rate to this temperature. It was observed that the yield and tensile strengths were dependent on the volume fraction of martensite but not on the morphology. In contrast, the true uniform strain, fracture strain, and fracture stress were found to have a significant dependence on martensite morphology. These results were rationalized by considering an Eshelby-based model, which allowed for the calculation of the stress in the martensite islands for different morphologies and volume fractions. By comparing the stress in the martensite with an estimate of its yield stress, it was possible to rationalize the conditions under which martensite plasticity occurs. The implications of martensite plasticity affect the work hardening of the steels but most importantly the fracture properties. For conditions where martensite codeforms with the ferrite matrix, void nucleation is suppressed and the final fracture properties are dramatically improved.

## Keywords

Ferrite Martensite Intercritical Annealing Martensite Volume Fraction Intercritical Temperature## Notes

### Acknowledgments

The authors gratefully acknowledge the support of NSERC (Canada) and Stelco, Inc., which made this work possible. The comments of J.D. Embury, C.W. Sinclair, and Olivier Bouaziz on the manuscript are also highly appreciated.

## References

- 1.Rigsbee J.M., Vanderarend P.J. (1977) In: Davenport A.T (eds) Formable HSLA and Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 56–86Google Scholar
- 2.Lanzillotto C.A.N., Pickering F.B. (1982) Met. Sci. 16:371–82CrossRefGoogle Scholar
- 3.Marder A.R., Bramfitt B.L. (1979) In: Kot R.A., Morris J.W. (eds) Structure and Properties of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 242–59Google Scholar
- 4.Speich G.R., Miller R.L. (1979) In: Kot R.A., Morris J.W. (eds) Structure and Properties of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 145–82Google Scholar
- 5.Davies R.G., Magee C.L. (1979) In: Kot R.A., Morris J.W. (eds) Structure and Properties of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 1–19Google Scholar
- 6.Speich G.R. (1981) In: Kot R.A., Bramfitt B.L. (eds) Fundamentals of Dual Phase Steels. TMS-AIME, Warrendale, PA, pp. 3–45Google Scholar
- 7.Embury J.D., Duncan J.L. (1981) In: Kot R.A., Bramfitt B.L. (eds) Fundamentals of Dual Phase Steels. TMS-AIME, Warrendale, PA, pp. 333–45Google Scholar
- 8.Yi J.J., Yu K.J., Kim I.S., Kim S.J. (1983) Metall. Mater. Trans. A 14A:1497–1504Google Scholar
- 9.Pickering F.B. (1992) Constitution and Properties of Steels. Weinheim, Germany, pp. 77–79Google Scholar
- 10.Gladman T. (1997) The Physical Metallurgy of Microalloyed Steels. The Institute of Metals, London, pp. 325–36Google Scholar
- 11.Balliger N.K., Gladman T. (1981) Met. Sci. 15:95–108CrossRefGoogle Scholar
- 12.J.M. Rigsbee, J.K. Abraham, A.T. Davenport, J.E. Franklin, J.W. Pickens, in
*Structure and Properties of Dual-Phase Steels*, B.L.J.W.M.R.A. Kot, ed., TMS-AIME, Warrendale, PA, 1979, pp. 304–29Google Scholar - 13.Klaar H.-J.E.-S.I.A., Hussein A.-H.A (1990) Steel Res. 61:85–92Google Scholar
- 14.Faral O.M., Hourman T. (1999) 41st Conf. on Mechanical Working and Steel Processing. ISS, Warrendale, PA, pp. 253–64Google Scholar
- 15.Waterschoot T., De Cooman B.C., Vanderschueren D. (2001) Ironmaking and Steelmaking, 28:185–90CrossRefGoogle Scholar
- 16.Koo J.Y., Young M.J., Thomas G. (1980) Metall. Trans. A 11A:852–54Google Scholar
- 17.Bag A., Ray K.K., Dwarakadasa E.S. (1999) Metall. Mater. Trans. A 30A:1193–202CrossRefGoogle Scholar
- 18.Kim N.J.T.G. (1981) Metall. Trans. A 12A:483–89Google Scholar
- 19.Pickering F.B. (1978) Physical Metallurgy and the Design of Steels. Applied Science Publishers, LondonGoogle Scholar
- 20.Sherman A.M., Davies R.G., Donlon W.T. (1981) In: Kot R.A., Morris J.W. (eds) Fundamentals of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 85–94Google Scholar
- 21.Bourell D.L., Rizk A. (1983) Acta Metall. 31:609–17CrossRefGoogle Scholar
- 22.Liedel U., Traint S., Werner E.A. (2002) Comp. Mater. Sci. 25:122–28CrossRefGoogle Scholar
- 23.Leslie W.C. (1981) The Physical Metallurgy of Steels. McGraw-Hill, New York, NY, pp 216–23Google Scholar
- 24.Davies R.G. (1978) Metall. Trans. A 9A:671–79Google Scholar
- 25.Marder A.R. (1982) Metall. Trans. A 13A:85–92Google Scholar
- 26.Su Y.L., Gurland J. (1987) Mater. Sci. Eng. 95:151–65CrossRefGoogle Scholar
- 27.Shen H.P., Lei T.C., Liu J.Z. (1986) Mater. Sci. Technol. 2:28–33Google Scholar
- 28.Rashid M.S., Cprek E.R. (1978) Formability Topics—Metallic Materials. ASTM, Philadelphia, PA, pp. 174–90Google Scholar
- 29.Byun T.S., Kim I.-S. J. (1993) Mater. Sci. 28:2923–32CrossRefGoogle Scholar
- 30.Huang J., Poole W.J., Militzer M. (2004) Metall. Mater. Trans. A 35A:3363–75CrossRefGoogle Scholar
- 31.M. Mazanni: Ph.D. Thesis, The University of British Columbia, Vancouver, BC, 2006Google Scholar
- 32.Grange R.A. (1970) 2nd Int. Conf. on the Strength of Metals and Alloys. ASM, Metals Park, OH, pp. 861–76Google Scholar
- 33.Ramos L.F., Matlock D.K., Krauss G. (1979) Metall. Trans. A 10A:259–61Google Scholar
- 34.Brockenbrough J.R., Zok F.W. (1995) Acta Metall. Mater. 43:11–20Google Scholar
- 35.Bao G., Hutchinson J.W., McMeeking R.M. (1991) Acta Metall. Mater. 39:1871–82CrossRefGoogle Scholar
- 36.Weng G.J. (1990) J. Mech. Phys. Solids 38:419–41CrossRefGoogle Scholar
- 37.Ozturk T., Poole W.J., Embury J.D. (1991) Mater. Sci. Eng. A148:175–78Google Scholar
- 38.Ozturk T., Mirmesdagh J., Ediz T. (1994) Mater. Sci. Eng. A175:125–29Google Scholar
- 39.Langford G., Cohen M. (1969) Trans. ASM 62:623–38Google Scholar
- 40.Thomason P.F. (1990) Ductile Fracture of Metals. Pergamon Press, Oxford, United Kingdom Google Scholar
- 41.Steinbrunner D.L.M., Krauss D.K. (1988) Metall. Trans. A 19A:579–89Google Scholar
- 42.Duan X., Jain M., Metzger D., Kang J., Wilkinson D.S., Embury J.D. (2005) Mater. Sci. Eng. A394:192–203Google Scholar
- 43.Qiu G.J.Y.P.W. (1991) Int. J. Solids Struct. 27:1537–50CrossRefGoogle Scholar