Advertisement

Metallurgical and Materials Transactions A

, Volume 38, Issue 2, pp 328–339 | Cite as

Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel

  • M. Mazinani
  • W.J. Poole
Article

Abstract

An experimental study has been conducted to quantify the effects of martensite plasticity on the mechanical properties of a commercial low-carbon (0.06 wt pct) dual-phase steel. The volume fraction and morphology (banded and more equiaxed) of the martensite second phase were systematically varied by control of the intercritical annealing temperature and the heating rate to this temperature. It was observed that the yield and tensile strengths were dependent on the volume fraction of martensite but not on the morphology. In contrast, the true uniform strain, fracture strain, and fracture stress were found to have a significant dependence on martensite morphology. These results were rationalized by considering an Eshelby-based model, which allowed for the calculation of the stress in the martensite islands for different morphologies and volume fractions. By comparing the stress in the martensite with an estimate of its yield stress, it was possible to rationalize the conditions under which martensite plasticity occurs. The implications of martensite plasticity affect the work hardening of the steels but most importantly the fracture properties. For conditions where martensite codeforms with the ferrite matrix, void nucleation is suppressed and the final fracture properties are dramatically improved.

Keywords

Ferrite Martensite Intercritical Annealing Martensite Volume Fraction Intercritical Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the support of NSERC (Canada) and Stelco, Inc., which made this work possible. The comments of J.D. Embury, C.W. Sinclair, and Olivier Bouaziz on the manuscript are also highly appreciated.

References

  1. 1.
    Rigsbee J.M., Vanderarend P.J. (1977) In: Davenport A.T (eds) Formable HSLA and Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 56–86Google Scholar
  2. 2.
    Lanzillotto C.A.N., Pickering F.B. (1982) Met. Sci. 16:371–82CrossRefGoogle Scholar
  3. 3.
    Marder A.R., Bramfitt B.L. (1979) In: Kot R.A., Morris J.W. (eds) Structure and Properties of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 242–59Google Scholar
  4. 4.
    Speich G.R., Miller R.L. (1979) In: Kot R.A., Morris J.W. (eds) Structure and Properties of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 145–82Google Scholar
  5. 5.
    Davies R.G., Magee C.L. (1979) In: Kot R.A., Morris J.W. (eds) Structure and Properties of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 1–19Google Scholar
  6. 6.
    Speich G.R. (1981) In: Kot R.A., Bramfitt B.L. (eds) Fundamentals of Dual Phase Steels. TMS-AIME, Warrendale, PA, pp. 3–45Google Scholar
  7. 7.
    Embury J.D., Duncan J.L. (1981) In: Kot R.A., Bramfitt B.L. (eds) Fundamentals of Dual Phase Steels. TMS-AIME, Warrendale, PA, pp. 333–45Google Scholar
  8. 8.
    Yi J.J., Yu K.J., Kim I.S., Kim S.J. (1983) Metall. Mater. Trans. A 14A:1497–1504Google Scholar
  9. 9.
    Pickering F.B. (1992) Constitution and Properties of Steels. Weinheim, Germany, pp. 77–79Google Scholar
  10. 10.
    Gladman T. (1997) The Physical Metallurgy of Microalloyed Steels. The Institute of Metals, London, pp. 325–36Google Scholar
  11. 11.
    Balliger N.K., Gladman T. (1981) Met. Sci. 15:95–108CrossRefGoogle Scholar
  12. 12.
    J.M. Rigsbee, J.K. Abraham, A.T. Davenport, J.E. Franklin, J.W. Pickens, in Structure and Properties of Dual-Phase Steels, B.L.J.W.M.R.A. Kot, ed., TMS-AIME, Warrendale, PA, 1979, pp. 304–29Google Scholar
  13. 13.
    Klaar H.-J.E.-S.I.A., Hussein A.-H.A (1990) Steel Res. 61:85–92Google Scholar
  14. 14.
    Faral O.M., Hourman T. (1999) 41st Conf. on Mechanical Working and Steel Processing. ISS, Warrendale, PA, pp. 253–64Google Scholar
  15. 15.
    Waterschoot T., De Cooman B.C., Vanderschueren D. (2001) Ironmaking and Steelmaking, 28:185–90CrossRefGoogle Scholar
  16. 16.
    Koo J.Y., Young M.J., Thomas G. (1980) Metall. Trans. A 11A:852–54Google Scholar
  17. 17.
    Bag A., Ray K.K., Dwarakadasa E.S. (1999) Metall. Mater. Trans. A 30A:1193–202CrossRefGoogle Scholar
  18. 18.
    Kim N.J.T.G. (1981) Metall. Trans. A 12A:483–89Google Scholar
  19. 19.
    Pickering F.B. (1978) Physical Metallurgy and the Design of Steels. Applied Science Publishers, LondonGoogle Scholar
  20. 20.
    Sherman A.M., Davies R.G., Donlon W.T. (1981) In: Kot R.A., Morris J.W. (eds) Fundamentals of Dual-Phase Steels. TMS-AIME, Warrendale, PA, pp. 85–94Google Scholar
  21. 21.
    Bourell D.L., Rizk A. (1983) Acta Metall. 31:609–17CrossRefGoogle Scholar
  22. 22.
    Liedel U., Traint S., Werner E.A. (2002) Comp. Mater. Sci. 25:122–28CrossRefGoogle Scholar
  23. 23.
    Leslie W.C. (1981) The Physical Metallurgy of Steels. McGraw-Hill, New York, NY, pp 216–23Google Scholar
  24. 24.
    Davies R.G. (1978) Metall. Trans. A 9A:671–79Google Scholar
  25. 25.
    Marder A.R. (1982) Metall. Trans. A 13A:85–92Google Scholar
  26. 26.
    Su Y.L., Gurland J. (1987) Mater. Sci. Eng. 95:151–65CrossRefGoogle Scholar
  27. 27.
    Shen H.P., Lei T.C., Liu J.Z. (1986) Mater. Sci. Technol. 2:28–33Google Scholar
  28. 28.
    Rashid M.S., Cprek E.R. (1978) Formability Topics—Metallic Materials. ASTM, Philadelphia, PA, pp. 174–90Google Scholar
  29. 29.
    Byun T.S., Kim I.-S. J. (1993) Mater. Sci. 28:2923–32CrossRefGoogle Scholar
  30. 30.
    Huang J., Poole W.J., Militzer M. (2004) Metall. Mater. Trans. A 35A:3363–75CrossRefGoogle Scholar
  31. 31.
    M. Mazanni: Ph.D. Thesis, The University of British Columbia, Vancouver, BC, 2006Google Scholar
  32. 32.
    Grange R.A. (1970) 2nd Int. Conf. on the Strength of Metals and Alloys. ASM, Metals Park, OH, pp. 861–76Google Scholar
  33. 33.
    Ramos L.F., Matlock D.K., Krauss G. (1979) Metall. Trans. A 10A:259–61Google Scholar
  34. 34.
    Brockenbrough J.R., Zok F.W. (1995) Acta Metall. Mater. 43:11–20Google Scholar
  35. 35.
    Bao G., Hutchinson J.W., McMeeking R.M. (1991) Acta Metall. Mater. 39:1871–82CrossRefGoogle Scholar
  36. 36.
    Weng G.J. (1990) J. Mech. Phys. Solids 38:419–41CrossRefGoogle Scholar
  37. 37.
    Ozturk T., Poole W.J., Embury J.D. (1991) Mater. Sci. Eng. A148:175–78Google Scholar
  38. 38.
    Ozturk T., Mirmesdagh J., Ediz T. (1994) Mater. Sci. Eng. A175:125–29Google Scholar
  39. 39.
    Langford G., Cohen M. (1969) Trans. ASM 62:623–38Google Scholar
  40. 40.
    Thomason P.F. (1990) Ductile Fracture of Metals. Pergamon Press, Oxford, United Kingdom Google Scholar
  41. 41.
    Steinbrunner D.L.M., Krauss D.K. (1988) Metall. Trans. A 19A:579–89Google Scholar
  42. 42.
    Duan X., Jain M., Metzger D., Kang J., Wilkinson D.S., Embury J.D. (2005) Mater. Sci. Eng. A394:192–203Google Scholar
  43. 43.
    Qiu G.J.Y.P.W. (1991) Int. J. Solids Struct. 27:1537–50CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007

Authors and Affiliations

  1. 1.Department of Materials EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations