Metallurgical and Materials Transactions A

, Volume 37, Issue 4, pp 1267–1280 | Cite as

Effect of composition on the solidification behavior of several Ni-Cr-Mo and Fe-Ni-Cr-Mo alloys

  • M. J. Perricone
  • J. N. Dupont


The microstructural development of several Ni-Cr-Mo and Fe-Ni-Cr-Mo alloys over a range of conditions has been examined. A commercial alloy, AL-6XN, was chosen for analysis along with three experimental compositions to isolate the contribution of individual alloying elements to the overall microstructural development. Detailed microstructural characterization on each alloy demonstrated that the observed solidification reaction sequences were primarily dependent on the segregation behavior of molybdenum (Mo), which was unaffected by the large difference in cooling rate between differential thermal analysis (DTA) samples and welded specimens. This explains the invariance of the amount of eutectic constituent observed in the microstructure in the welded and DTA conditions. Multicomponent liquidus projections developed using the CALPHAD approach were combined with solidification path calculations as a first step to understanding the observed solidification reaction sequences. Discrepancies between the calculations and observed reaction sequences were resolved by proposing slight modifications to the calculated multicomponent liquidus projections.


Material Transaction Fusion Zone Interdendritic Region Experimental Alloy Liquidus Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.A. David, G.M. Goodwin, and D.N. Braski: Welding Res. (Miami), 1979, vol. 58, pp. 330s-336s.Google Scholar
  2. 2.
    J.N. DuPont: Weld. J. (Miami), 1999, vol. 78, pp. 253s-263s.Google Scholar
  3. 3.
    S.W. Banovic, J.N. DuPont, and A.R. Marder: Sci. Technol. Weld. Joining, 2002, vol. 7, pp. 374–83.CrossRefGoogle Scholar
  4. 4.
    A. Garner: Corrosion (Houston), 1979, vol. 35, pp. 108–14.Google Scholar
  5. 5.
    A. Garner: Mater. Performance, 1982, vol. 21, pp. 9–14.Google Scholar
  6. 6.
    M.B. Rockel and M. Renner: Werkst. Korr., 1984) vol. 35, pp. 537–42.CrossRefGoogle Scholar
  7. 7.
    P.I. Marshall and T.G. Gooch: Corrosion (Houston), 1993, vol. 49, pp. 514–26.CrossRefGoogle Scholar
  8. 8.
    A.H. Tuthill and R.E. Avery: Welding Res. (Miami), 1993, vol. 2, pp. 41–49.Google Scholar
  9. 9.
    A. Garner: Met. Progr., 1985, vol. 127, pp. 31–32, 34–36.Google Scholar
  10. 10.
    T. Ogawa and T. Koseki: Mater. Performance, 1996, vol. 35, pp. 87–91.Google Scholar
  11. 11.
    J.W. Elmer, T.W. Eagar, and S.M. Allen: Weldability Mater., Proc. Mater. Weldability Symp., Detroit, MI, ASM International, Materials Park, OH, 1990.Google Scholar
  12. 12.
    V.P. Kujanpaa and S.A. David: Proceedings, 5th International Congress on Applications of Lasers and Electro-optics (ICALEO 86), IFS Publications, Kempston, Bedford, United Kingdom, 1987, pp. 63–69.Google Scholar
  13. 13.
    Y. Nakao, N. Kazutoshi, W.P. Zhang, and Y. Tamura: Q. J. Jpn. Welding Soc., 1991, vol. 9, pp. 122–28.Google Scholar
  14. 14.
    Y. Nakao, K. Nishimoto, and W.P. Zhang: Trans. Jpn. Welding Soc., 1988, vol. 19, pp. 100–06.Google Scholar
  15. 15.
    M.J. Perricone and J.N. DuPont: 6th Int. Conf. on Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 2002.Google Scholar
  16. 16.
    M.J. Cieslak, T.J. Headley, and A.D. Romig, Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 2035–47.Google Scholar
  17. 17.
    E. Gozlan, M. Bamberger, S.F. Dirnfeld, B. Prinz, and J. Klodt: Mater. Sci. Eng., 1991, vol. A141, pp. 85–95.Google Scholar
  18. 18.
    E. Gozlan, S.F. Dirnfeld, M. Bamberger, J. Klodt, and B. Prinz: Z. Metallkd., 1993, vol. 84, pp. 776–80.Google Scholar
  19. 19.
    J.A. Brooks and A.W. Thompson: Int. Mater. Rev., 1991, vol. 36, pp. 16–44.Google Scholar
  20. 20.
    S. Atamert and J.E. King: Acta Metall. Mater., 1991, vol. 39, pp. 273–85.CrossRefGoogle Scholar
  21. 21.
    J.W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20A, pp. 2117–31.Google Scholar
  22. 22.
    J.M. Vitek and S.A. David: in The Metal Science of Joining, M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E.Glicksman, eds., Cincinnati, OH, 1992, pp. 115–22.Google Scholar
  23. 23.
    J.A. Brooks, M.I. Baskes, and F.A. Greulich: Metall. Trans. A, 1991, vol. 22A, pp. 915–26.Google Scholar
  24. 24.
    J.N. DuPont, C.V. Robino, and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 4781–90.CrossRefGoogle Scholar
  25. 25.
    B. Sundman: Rev. Alloys Modeling, Anales de Fisica, Ser. B, 1990, vol. 86, pp. 69–82.Google Scholar
  26. 26.
    B. Sundman: Thermo-Calc. [N]. 2001, KTH, Stockholm, 1996.Google Scholar
  27. 27.
    N. Saunders: Ni-Data Thermodynamic Database. [4.0]. Thermotech, Ltd., Guildford, United Kingdom, 2000.Google Scholar
  28. 28.
    J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Notis, and A.R. Marder: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785–96.CrossRefGoogle Scholar
  29. 29.
    J.N. DuPont: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3612–20.CrossRefGoogle Scholar
  30. 30.
    M.J. Cieslak, T.J. Headley, T. Kollie, and A.D. Roming, Jr.: Metall. Trans. A, 1988, vol. 19A, pp. 2319–31.Google Scholar
  31. 31.
    M.J. Cieslak: Welding Res. (Miami), 1991, vol. 70, pp. 49–56.Google Scholar
  32. 32.
    C.V. Robino, J.R. Michael, and M.J. Cieslak: Sci. Technol. Welding Joining, 1997, vol. 2, pp. 220–30.Google Scholar
  33. 33.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, Jr., and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.Google Scholar
  34. 34.
    ASTM International E562-02, ASTM, West Conshohocken, PA, 2002.Google Scholar
  35. 35.
    K.F.J. Heinrich, A.D. Romig, Jr., and W.F. Chambers: Microbeam Analysis, Proceedings of the 21st Annual Conference of the Microbeam Analysis Society, Albuquerque, NM, 1986, A.D. Romig, Jr. and W.F. Chambers, eds., San Francisco Press, Inc., San Francisco, CA.Google Scholar
  36. 36.
    B. Weiss and R. Stickler: Metall. Mater. Trans. A, 1972, vol. 31A, p. 851.Google Scholar
  37. 37.
    M. Raghavan, R.R. Mueller, G.A. Vaughn, and S. Floreen: Metall. Mater. Trans. A, 1984, vol. 15A, pp. 783–92.Google Scholar
  38. 38.
    D.S. Bloom and N.J. Grant: Trans. TMS-AIME, 1954, pp. 261–68.Google Scholar
  39. 39.
    N. Saunders: Fe-Data Thermodynamic Database. [3.0], ThermoTech Ltd., Guildford, United Kingdom, 2001.Google Scholar
  40. 40.
    M.J. Perricone, J.N. DuPont, and M.J. Cieslak: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1127–32.CrossRefGoogle Scholar
  41. 41.
    K.P. Gupta: Phase Diagrams of Ternary Nickel Alloys, Part 1, Indian Institute of Metals, Calcutta, 1990.Google Scholar
  42. 42.
    M.J. Perricone and J.N. DuPont: Int. Conf. Joining of Advanced and Specialty Materials, J.E. Indacochea and J.N.V. DuPont, eds., ASM INTERNATIONAL, Materials Park, OH, 2002.Google Scholar
  43. 43.
    R. Mehrabian and M.C. Flemings: Metall. Trans., 1970, vol. 1, p. 455.Google Scholar
  44. 44.
    R. Pfoertsch: Austenite, [PDF Card 33-0397], International Centre for Diffraction Data, 1982.Google Scholar
  45. 45.
    B. Duwez: Sigma Phase, FeCrMo, [PDF Card 09-0050], International Centre for Diffraction, Newtown Square, PA, 1950.Google Scholar
  46. 46.
    J.N. DuPont, S.W. Banovic, and A.R. Marder: Welding J., 2003, vol. 82, pp. 125s-35s.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • M. J. Perricone
    • 1
    • 2
  • J. N. Dupont
    • 3
  1. 1.Department of Materials Science and EngineeringLehigh UniversityUSA
  2. 2.Joining and Coatings DivisionSandia National Laboratories, Albuquerque
  3. 3.Department of Materials Science and EngineeringLehigh UniversityBethlehem

Personalised recommendations