Advertisement

Metallurgical and Materials Transactions A

, Volume 37, Issue 10, pp 2939–2945 | Cite as

Mechanical properties and deformation behavior of amorphous nickel-phosphorous films measured by nanoindentation test

  • Shou-Yi Chang
  • Yu-Shuien Lee
  • Hsiang-Long Hsiao
  • Ting-Kui Chang
Article

Abstract

In this study, amorphous Ni-P films were deposited by electroless plating under different pH values. Their mechanical properties and deformation behavior were then investigated by instrumented nano-indentation. With increasing pH value of the plating solution from 3.75 to 6.0, the hardness and elastic modulus of the obtained Ni-P films increased from 6.1 GPa and 146 GPa to 8.2 GPa and 168 GPa respectively. From the load-indentation depth curve, the Ni-P films were found to yield at an indentation depth of 8 nm. By microstructural examination around the indented regions, early-stage plastic deformation of the amorphous Ni-P films was verified through the formation and extension of shear bands with a spacing of several tens of nanometers. Within the shear bands, flow dilatation-induced intense shear localization was expected and resulted in crystallization in the amorphous matrix. The critical shear stress and energy release rate required for the initiation of early-stage plastic yielding of the Ni-P films were calculated to be about 1.4 GPa and 3.0 J/m2 respectively, both of which increased with pH values.

Keywords

Material Transaction Shear Band Energy Release Rate Indentation Depth Critical Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.F. Spencer: Metal. Finish., 1974, vol. 10, pp. 35–39.Google Scholar
  2. 2.
    G.O. Mallory and J.B. Hajdu: Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando, FL, 1990.Google Scholar
  3. 3.
    X. Li, B. Bhushan, K. Takashima, C.W. Baek, and Y.K. Kim: Ultramicroscopy, 2003, vol. 97, pp. 481–94.CrossRefGoogle Scholar
  4. 4.
    W.S. Chung, S.Y. Chang, and S.J. Lin: Plat. Surf. Finish., 1996, vol. 83, pp. 68–71.Google Scholar
  5. 5.
    I. Apachitei, F.D. Tichelaar, J. Duszczyk, and L. Katgerman: Surf. Coat. Technol., 2001, vol. 148, pp. 284–95.CrossRefGoogle Scholar
  6. 6.
    I. Apachitei, F.D. Tichelaar, J. Duszczyk, and L. Katgerman: Surf. Coat. Technol., 2002, vol. 149, pp. 263–78.CrossRefGoogle Scholar
  7. 7.
    S.K. Tien, J.G. Duh, and Y.I. Chen: Surf. Coat. Technol., 2004, vol. 177, pp. 532–36.CrossRefGoogle Scholar
  8. 8.
    S.K. Tien, J.G. Duh, and Y.I. Chen: Thin Solid Films, 2004, vol. 469, pp. 333–38.CrossRefGoogle Scholar
  9. 9.
    A. Inoue: Bulk Amorphous Alloys: Preparation and Fundamental Characteristics, Vol. 4, Materials Science Foundations, Trans. Tech. Publications, Netherlands, 1998.Google Scholar
  10. 10.
    P.E. Donovan: Acta Mater., 1989, vol. 37, pp. 445–56.CrossRefGoogle Scholar
  11. 11.
    P. Lowhaphandu, S.L. Montgomery, and J.J. Lewandowski: Scripta Mater., 1999, vol. 41, pp. 19–24.CrossRefGoogle Scholar
  12. 12.
    J.G. Wang, B.W. Choi, T.G. Nieh, and C.T. Liu: J. Mater. Res., 2000, vol. 15, pp. 798–807.Google Scholar
  13. 13.
    R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Acta Mater., 2001, vol. 49, pp. 3781–89.CrossRefGoogle Scholar
  14. 14.
    W.J. Wright, R. Saha, and W.D. Nix: Mater. Trans. Jpn. Inst. Mater., 2001, vol. 42, pp. 642–49.CrossRefGoogle Scholar
  15. 15.
    J.J. Kim, Y. Choi, S. Suresh, and A.S. Argon: Science, 2002, vol. 295, pp. 654–57.Google Scholar
  16. 16.
    G.P. Zhang, W. Wang, B. Zhang, J. Tan, and C.S. Liu: Scripta Mater., 2005, vol. 52, pp. 1147–51.CrossRefGoogle Scholar
  17. 17.
    C.A. Schuh and T.G. Nieh: J. Mater. Res., 2004, vol. 19, pp. 46–57.Google Scholar
  18. 18.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.Google Scholar
  19. 19.
    A.C. Fischer-Cripps: Nanoindentation, Springer-Verlag, New York, 2002, pp. 1–173.Google Scholar
  20. 20.
    A.E. Giannakopoulos and S. Suresh: Scripta Mater., 1999, vol. 40, pp. 1191–98.CrossRefGoogle Scholar
  21. 21.
    E. Martinez, J. Romero, A. Lousa, and J. Esteven: Appl. Phys. A, 2003, vol. 77, pp. 419–27.CrossRefGoogle Scholar
  22. 22.
    S. Suresh, T.G. Nieh, and B.W. Choi: Scripta Mater., 1999, vol. 41, pp. 951–57.CrossRefGoogle Scholar
  23. 23.
    A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Acta Mater., 2000, vol. 48, pp. 2277–99.CrossRefGoogle Scholar
  24. 24.
    J. Chen, W. Wang, L.H. Qian, and K. Lu: Scripta Mater., 2003, vol. 49, pp. 645–50.CrossRefGoogle Scholar
  25. 25.
    S.Y. Chang, T.Q. Chang, and Y.S. Lee: J. Electrochem. Soc., 2005, vol. 152, pp. C657–63.CrossRefGoogle Scholar
  26. 26.
    B. Jackson, R. Macary, and G. Shawhan: Trans. Inst. Metal Finishing, 1990, vol. 68, pp. 75–83.Google Scholar
  27. 27.
    K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985.Google Scholar
  28. 28.
    T.H. Courtney: Mechanical Behavior of Materials, McGraw-Hill, New York, 1990, pp. 80–136, 263–324.Google Scholar
  29. 29.
    S.J. Bull and D.S. Rickerby: Surf. Coat. Technol., 1990, vol. 42, pp. 149–64.CrossRefGoogle Scholar
  30. 30.
    S.J. Bull: Surf. Coat. Technol., 1991, vol. 50, pp. 25–32.CrossRefGoogle Scholar
  31. 31.
    S. Benayoun, L. Fouilland-Paillé, and J.J. Hantzpergue: Thin Solid Films, 1999, vol. 352, pp. 156–66.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Shou-Yi Chang
    • 1
  • Yu-Shuien Lee
    • 1
  • Hsiang-Long Hsiao
    • 1
  • Ting-Kui Chang
    • 1
  1. 1.Department of Materials EngineeringNational Chung Hsing UniversityTaichungTaiwan, Republic of China

Personalised recommendations