Metallurgical and Materials Transactions A

, Volume 37, Issue 6, pp 1949–1962 | Cite as

Soldification segregation in ruthenium-containing nickel-base superalloys

  • Q. Feng
  • L. J. Carroll
  • T. M. Pollock
Article

Abstract

Ruthenium-containing multicomponent Ni-base superalloys with large variations in refractory alloying elements (Re, Ru, Ta, and W) have been investigated with respect to solidification, segregation characteristics, and the tendency to develop grain defects during directional solidification. Phase transformation temperatures and the effects of alloy composition on the liquidus temperature were determined by differential thermal analysis (DTA). The liquidus temperatures for most Ru-containing superalloys are generally higher than those of current commercial single-crystal superalloys. The partitioning behavior of individual constituents under the influence of alloy chemistry was characterized using a quantitative segregation mapping technique combined with a Scheil-type analysis. Whereas ruthenium partitioned preferentially to the dendrite cores during soldification, segregation of Ru is much less pronounced than Re and W. A higher degree of rhenium segregation was observed in Ru-containing superalloys. For the fixed processing conditions and moderate levels of Ru+Re, single-crystal solidification occurred without freckle formation or convection-induced breakdown of the solidification front. However, with high levels of Ru (9.6 ∼ 14.1 wt pct) and Re (7.2 wt pct), grain defects or the complete breakdown of single-crystal solidification was observed. Results from segregation and DTA analyses were used to estimate the corresponding Rayleigh numbers present during solidification of the experimental alloys. The Rayleigh criterion is effective for predicting the conditions under which the grain defect formation occurs during directional solidification of Ru-containing superalloys.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.S. O’Hara, W.S. Walston, E.W. Ross, and R. Darolia: U.S. Patent, No. 5,482,789, 1996.Google Scholar
  2. 2.
    P. Caron: Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra (eds.), TMS, Miner. Metals & Mater. Society, 2000, pp. 737–46.Google Scholar
  3. 3.
    H. Murakami, Y. Honma, Y. Koizumi, and H. Harada: Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra (eds.), TMS, Miner. Metals & Mater. Society, 2000, pp. 747–56.Google Scholar
  4. 4.
    T.B. Massalski: Binary Alloy Phase Diagrams. ASM International, 1990.Google Scholar
  5. 5.
    Q. Feng, T.K. Nandy, S. Tin, and T.M. Pollock: Acta Mater., 2003, vol. 51, pp. 269–84.CrossRefGoogle Scholar
  6. 6.
    J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, and S. Masaki, Jr.: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3741–46.CrossRefGoogle Scholar
  7. 7.
    A.F. Giamei and D.L. Anton: Metall. Trans. A, 1985, vol. 16, pp. 1997–2005.Google Scholar
  8. 8.
    T.M. Pollock and W.H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1081–94.Google Scholar
  9. 9.
    F.L. VerSynder: U.S. Patent, No. 3,260,505, 1966.Google Scholar
  10. 10.
    A.K. Sample and A. Hellawell: Metall. Trans. A, 1984, vol. 15, pp. 2163–73.Google Scholar
  11. 11.
    R. Mehrabian, M. Keane, and M.C. Flemings: Metall. Trans., 1970, vol. 1, p. 1209.Google Scholar
  12. 12.
    J.R. Sarazin and A. Hellawell: Metall. Trans. A, 1988, vol. 19, pp. 1861–71.Google Scholar
  13. 13.
    S.N. Tewari, R. Shah, and M.A. Chopra: Metall. Trans. A, 1993, vol. 24, pp. 1661–69.Google Scholar
  14. 14.
    M.G. Worster: J. Fluid Mech., 1992, vol. 237, pp. 649–69.CrossRefGoogle Scholar
  15. 15.
    M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1517–31.CrossRefGoogle Scholar
  16. 16.
    J.P. Gu, C. Beckermann, and A.F. Giamei: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1533–42.CrossRefGoogle Scholar
  17. 17.
    C. Beckermann, J.P. Gu, and W.J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2545–57.CrossRefGoogle Scholar
  18. 18.
    P.K. Sung and D.R. Poirier: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2173–81.CrossRefGoogle Scholar
  19. 19.
    S. Tin, T.M. Pollock, and W. Murphy: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1743–53.CrossRefGoogle Scholar
  20. 20.
    A. Hellawell, J.R. Sarazin, and R.S. Steube: Philos. Trans. R. Soc. London, Ser. A, 1993, vol. 345, pp. 507–44.Google Scholar
  21. 21.
    W.H. Yang, W. Chen, K.M. Chang, S. Mannan, and J. deBarbadillo: Metall. Mater. Trans. A, 2001, vol. 32, pp. 397–406.Google Scholar
  22. 22.
    P. Auburtin, T. Wang, S.L. Cockcroft, and A. Mitchell: Metall. Mater. Trans. A, 2000, vol. 31, pp. 801–11.CrossRefGoogle Scholar
  23. 23.
    J.C. Ramirez and C. Beckermann: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1525–36.CrossRefGoogle Scholar
  24. 24.
    M.G. Worster: Ann. Rev. Fluid Mech., 1997, vol. 29, pp. 91–122.CrossRefGoogle Scholar
  25. 25.
    S. Tin: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, U.S.A., 2001.Google Scholar
  26. 26.
    G.E. Fuchs: Mater. Sci. Eng. A, 2001, vol. 300, pp. 52–60.CrossRefGoogle Scholar
  27. 27.
    S. Tin and T.M. Pollock: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1953–67.CrossRefGoogle Scholar
  28. 28.
    M.N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33.Google Scholar
  29. 29.
    P. Auburtin: Ph.D. Thesis, Univeristy of British Columbia, Vancouver, Canada, 1998.Google Scholar
  30. 30.
    P.K. Sung, D.R. Poirier, and E. McBride: Mater. Sci. Eng. A, 1997, vol. 231, pp. 189–97.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Q. Feng
    • 1
  • L. J. Carroll
    • 1
  • T. M. Pollock
    • 1
  1. 1.Materials Science and Engineering DepartmentUniversity of MichiganAnn ArborU.S.A.
  2. 2.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingP.R. China
  3. 3.Materials and Process Engineering DepartmentGE AviationEvendaleU.S.A.

Personalised recommendations