Advertisement

Metallurgical and Materials Transactions A

, Volume 37, Issue 6, pp 1721–1729 | Cite as

Kinetic transitions and substititional solute (Mn) fields associated with later stages of ferrite growth in Fe-C-Mn-Si

  • H. Guo
  • G. R. Purdy
  • M. Enomoto
  • H. I. Aaronson
Article

Abstract

A low-carbon balloy steel with relatively high Mn and Si concentrations (0.04 wt pct C-3 wt pct Mn-1.9 wt pct Si) has been used to explore the effects of alloy chemistry and austenite grain size on ferrite growth. Even at high levels of supersaturation, the volume fraction of ferrite is found to increase slowly relative to the relaxation time for carbon diffusion. A series of scanning transmission electron microscopy (STEM) analyses for Mn indicates that initial unpartitioned ferrite growth is replaced by partitioned growth, accompanied by a dramatic drop in growth rate, and a persistent level of residual supersaturation in the remaining austenite. The results are interpreted in terms of a transition from an initial paraequilibrium interfacial condition to partitioned ferrite growth.

Keywords

Ferrite Austenite Material Transaction Scanning Transmission Electron Microscopy Carbon Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hultgren: Trans. Am. Soc. Met., 1947, vol. 39, pp. 915–1005.Google Scholar
  2. 2.
    C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–95.Google Scholar
  3. 3.
    F.E. Bowman: Trans. ASM, 1946, vol. 36, pp. 61–80.Google Scholar
  4. 4.
    M. Hillert: “Paraequilibrium,” Internal report, Swedish Institute of Metals, 1947.Google Scholar
  5. 5.
    J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, pp. 907–16.Google Scholar
  6. 6.
    G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: Trans. Metall. Soc. AIME, 1964, vol. 230, pp. 1025–34.Google Scholar
  7. 7.
    H.I. Aaronson and H.A. Domian: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 781–96.Google Scholar
  8. 8.
    J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 3213–22.Google Scholar
  9. 9.
    D.E. Coates: Metall. Trans., 1972, vol. 3, pp. 1203–12.Google Scholar
  10. 10.
    D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 2313–25.Google Scholar
  11. 11.
    J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1981, vol. 12A, pp. 1729–41.Google Scholar
  12. 12.
    M. Enomoto and H.I. Aaronson: Metall. Trans. A, 1987, vol. 18A, pp. 1547–57.Google Scholar
  13. 13.
    K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48, pp. 2147–55.CrossRefGoogle Scholar
  14. 14.
    M. Hillert: Scripta Mater., 2002, vol. 46, pp. 447–53.CrossRefGoogle Scholar
  15. 15.
    J. Odqvist, M. Hillert, and J. Ågren: Acta Mater., 2002, vol. 50, pp. 3213–27.CrossRefGoogle Scholar
  16. 16.
    H.I. Aaronson, W.T. Reynolds, Jr., and G.R. Purdy: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1731–46.Google Scholar
  17. 17.
    H.I. Aaronson, W.T. Reynolds, Jr., and G.R. Purdy: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1187–210.Google Scholar
  18. 18.
    Smithells’ Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth-Heinemann Ltd., Oxford, 1992.Google Scholar
  19. 19.
    J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789–98.CrossRefGoogle Scholar
  20. 20.
    M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, pp. 731–43.CrossRefGoogle Scholar
  21. 21.
    J.R. Bradley, J.M. Rigsbee, and H.I. Aaronson: Metall. Trans. A, 1977, vol. 8A, pp. 323–33.Google Scholar
  22. 22.
    K.R. Kinsman and H.I. Aaronson: in Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, p. 39, 1967.Google Scholar
  23. 23.
    G.R. Purdy and Y.J.M. Bréchet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.CrossRefGoogle Scholar
  24. 24.
    M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3533–40.CrossRefGoogle Scholar
  25. 25.
    H.A. Fletcher, A.J. Garratt-Reed, H.I. Aaronson, G.R. Purdy, W.T. Reynolds, Jr., and G.D.W. Smith: Scripta Mater., 2001, vol. 45, pp. 561–67.CrossRefGoogle Scholar
  26. 26.
    M. Guttman and D. MacLean: Interfacial Segregation, ASM, Metals Park, OH, p. 261, 1977.Google Scholar
  27. 27.
    T. Tanaka, H.I. Aaronson, and M. Enomoto: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 561–80.Google Scholar
  28. 28.
    K. Lucke and H.P. Stüwe: Acta Metall., 1971, vol. 19, pp. 1087–99.CrossRefGoogle Scholar
  29. 29.
    Y.J.M. Brechet and G.R. Purdy: Scripta Metall. Mater., 1990, vol. 24, pp. 1831–35.CrossRefGoogle Scholar
  30. 30.
    M. Hillert: in The Mechanism of Phase Transformation in Crystalline Solids, Institute of Metals, London, 1969, pp. 231–47.Google Scholar
  31. 31.
    M. Hillert: Metal. Sci., 1979, vol. 13, pp. 118–24.Google Scholar
  32. 32.
    J.R. Michael and D.B. Williams: J. Microsc., 1987, vol. 147, pp. 289–303.Google Scholar
  33. 33.
    H.I. Aaronson and C. Wells: J. Metals, 1956, vol. 206, pp. 1216–23.Google Scholar
  34. 34.
    E.S.K. Menon and H.I. Aaronson: Acta Metall., 1987, vol. 35, pp. 549–63.CrossRefGoogle Scholar
  35. 35.
    G. Spanos and M.G. Hall: Metall. Trans. A, 1996, vol. 27A, pp. 1519–34.Google Scholar
  36. 36.
    V.J. Keast and D.B. Williams: J. Microsc., 2000, vol. 199, pp. 45–55.CrossRefGoogle Scholar
  37. 37.
    V.J. Keast, J. Bruley, P. Rez, J.M. MacLaren, and D.B. Williams: Acta Mater., 1998, vol. 46, pp. 481–90.CrossRefGoogle Scholar
  38. 38.
    G.D.W. Smith: private communication, 2002.Google Scholar
  39. 39.
    V.J. Keast and D.B. Williams: Acta Mater., 1999, vol. 47, pp. 3999–4008.CrossRefGoogle Scholar
  40. 40.
    C. Wagner: Thermodynamics of Alloys, Addison-Wesley, Reading, MA, p. 51, 1952.Google Scholar
  41. 41.
    G.P. Krielaart, J. Sietsma, and S. van der Zwaag: Mater. Sci. Engineering, 1997, vol. A237, pp. 216–23.CrossRefGoogle Scholar
  42. 42.
    H.K.D.H. Bhadeshia and D.V. Edmonds. Acta Metall., 1980, vol. 28, pp. 1265–73.CrossRefGoogle Scholar
  43. 43.
    W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1433–63.Google Scholar
  44. 44.
    J.M. Vitek, S.S. Babu, and E. Kozeschnik: in Proceedings of the International Symposium on Austenite Formation and Decomposition, ISS, TMS, E.B. Damm and M.J. Merwin, eds., 2003, pp. 139–48.Google Scholar
  45. 45.
    M. Enomoto: in Proceedings of the International Symposium on Austenite Formation and Decomposition, ISS, TMS, E.B. Damm and M.J. Merwin, eds., 2003, pp. 97–112.Google Scholar
  46. 46.
    J. Ågren: Proceedings of the International Symposium on Austenite Formation and Decomposition, ISS, TMS, E.B. Damm and M.J. Merwin, eds., 2003, pp. 167–76.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • H. Guo
    • 1
  • G. R. Purdy
    • 2
  • M. Enomoto
    • 3
  • H. I. Aaronson
    • 4
    • 5
  1. 1.Department of Physics and ChemistryUniversity of Science and TechnologyBeijingPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  3. 3.Ibaraki UniversityIbarakiJapan
  4. 4.R.F. Mehl University Professor Emeritus, with Carnegie Mellon UniversityPittsburgh
  5. 5.School of Physics and Materials EngineeringMonash UniversityAustralia

Personalised recommendations