Metallurgical and Materials Transactions A

, Volume 37, Issue 3, pp 1039–1044 | Cite as

Synchrotron microradiography of temperature gradient zone melting in directional solidification

  • B. Li
  • H. D. Brody
  • A. Kazimirov
Article

Abstract

Using synchrontron microradiography, temperature gradient zone melting (TGZM) was observed in Sn-13 wt pct Bi alloy in real time during directional solidification. A significant amount of remelting was measured on the cold sides of the dendrite arms, whereas added solidification on the hot sides of the dendrite arms was observed during dendrite growth. Kinetics of TGZM was measured based on the real-time observations. TGZM had a significant effect on dendrite morphology during continuous cooling and holding within the solidification range. The presence of tertiary dendrite arms enhanced the rate of TGZM. Remelting also led to the disintegration of some secondary dendrite arms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Li, H.D. Brody, and A. Kazimirov: Phys. Rev. E., 2004, vol. 70, p. 062602.CrossRefGoogle Scholar
  2. 2.
    H.D. Brody: Gordon Research Conference, Plymouth, NH, 2002.Google Scholar
  3. 3.
    W.B. Pfann: Trans. AIME, 1955, vol. 203, pp. 961–64.Google Scholar
  4. 4.
    D.J. Allen and J.D. Hunt: Metall. Trans. A, 1976, vol. 7A, pp. 767–70.Google Scholar
  5. 5.
    D.J. Allen and J.D. Hunt: Solidification and Casting of Metals: Proceedings of an International Conference on Solidification, Sheffield. Metals Society, London, 1979, pp. 39–43.Google Scholar
  6. 6.
    N.J. Whistler and T.Z. Kattamis: J. Cryst. Growth, 1972, vol. 15, pp. 20–24.CrossRefGoogle Scholar
  7. 7.
    K.P. Young and D.H. Kirkwood: Metall. Trans. A, 1975, vol. 6A, pp. 197–205.Google Scholar
  8. 8.
    P.A. Curreri and W.F. Kaukler: Metall. Trans. A, 1996, vol. 27A, pp. 801–08.Google Scholar
  9. 9.
    S. Sen, W.F. Kaukler, P. Curreri, and D.M. Stefanescu: Metall. Trans. A, 1997, vol. 28A, pp. 2129–35.CrossRefGoogle Scholar
  10. 10.
    R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, and A. Snigirev: Phys. Rev. Lett., 1999, vol. 83, pp. 5062–65.CrossRefGoogle Scholar
  11. 11.
    R.H. Mathiesen, L. Arnberg, K. Ramsoskar, T. Weitkamp, C. Rau, and A. Snigirev: Metall. Trans. B, 2002, vol. 33B, pp. 613–23.Google Scholar
  12. 12.
    R.H. Mathiesen and L. Arnberg: Acta Mater., 2005, vol. 53, pp. 947–56.CrossRefGoogle Scholar
  13. 13.
    H.N. Thi, H. Jamgotchian, J. Gastaldi, J. Hartwig, T. Schenk, B. Billia, J. Baruchel, and Y. Dabo: J. Phys. D: Appl. Phys., 2003, vol. 36, pp. A83-A86.CrossRefGoogle Scholar
  14. 14.
    M. Kahlweit: Scripta Metall., 1968, vol. 2, pp. 251–4.CrossRefGoogle Scholar
  15. 15.
    T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings: Trans. AIME, 1967, vol. 239, pp. 1504–11.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • B. Li
    • 1
  • H. D. Brody
    • 1
  • A. Kazimirov
    • 2
  1. 1.the Department of Metallurgy and Materials EngineeringUniversity of ConnecticutStorrs
  2. 2.Cornell High Energy Synchrotron SourceIthaca

Personalised recommendations