Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 8, pp 2067–2072 | Cite as

Atomistic simulations of the effects of segregated elements on grain-boundary fracture in body-centered-cubic Fe

  • D. Farkas
  • B. Hyde
  • R. Nogueira
  • M. Ruda
Article

Abstract

We studied the detailed fracture behavior of a Σ=5 symmetrical-tilt grain boundary at low temperatures in Fe, using empirical interatomic potentials. For loadings just above the Griffith value, the crack propagates along the boundary for a distance of about 5 nm and then deflects toward the grains. When the boundary is loaded well above the Griffith criterion in pure bcc Fe, the crack deflects and propagates in an intragranular manner. Lattice trapping effects were observed in the initial stages, as the crack propagates along the grain boundary in a brittle manner with a periodicity given by the structural unit of the grain boundary. The effects of impurities on crack propagation along the grain boundary were simulated with various amounts of substitutional (Cr and Ni) and interstitial (H and C) impurities. The H impurities result in a strong embrittlement of the grain boundary, and no deflection of the fracture to the inside of the grains is observed. The element C has the opposite effect, inducing the deflection of the fracture to the interior of the grains from the beginning of the simulation. For the substitutional Ni and Cr impurities, the effects on grain-boundary fracture behavior are less dramatic, with Cr decreasing the resistance to grain-boundary fracture, if present in high concentrations. These effects agree with expectations based on the relative energies of segregation of the impurities to the grain boundary and free surface.

Keywords

Material Transaction Cohesive Energy Crack Advance Interstitial Impurity Substitutional Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.P. Sutton and R.W. Baluffi: Interfaces in Crystalline Materials, Clarendon Press, Oxford, United Kingdom, 1995, pp. 3–70.Google Scholar
  2. 2.
    D. Farkas: Phil. Mag. Lett., 2000, vol. 80, pp. 229–37.CrossRefGoogle Scholar
  3. 3.
    M. Kim, C.B. Geller, and A.J. Freeman: Scripta Mater., 2004, vol. 50, pp. 1341–43.CrossRefGoogle Scholar
  4. 4.
    W.T. Geng, A.J. Freeman, and G.B. Olson: Solid State Comm., 2001, vol. 119, pp. 585–90.CrossRefGoogle Scholar
  5. 5.
    W.T. Geng, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2001, vol. 63, p. 16.Google Scholar
  6. 6.
    L.P. Zhong, R.Q. Wu, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2000, vol. 62, pp. 13938–41.CrossRefGoogle Scholar
  7. 7.
    C.L. Briant: Mater. Sci. Technol., 2001, vol. 17, pp. 1317–23.Google Scholar
  8. 8.
    A.A. Griffith: Phil. Trans. R. Soc. London, Ser. A, 1920, vol. 221, pp. 163–75.Google Scholar
  9. 9.
    W. Curtin: J. Mater. Res., 1990, vol. 5, pp. 1549–60.Google Scholar
  10. 10.
    P. Gumbsch and R.M. Cannon: MRS Bull., 2000, vol. 25, pp. 15–20.Google Scholar
  11. 11.
    M.I. Baskes, S.M. Foiles, and M.S. Daw: J. Phys., 1988, vol. C5-49, pp. 483–95.Google Scholar
  12. 12.
    M. Ruda, D. Farkas, and J. Abriata: Phys. Rev. B, 1996, vol. 54, pp. 9765–74.CrossRefGoogle Scholar
  13. 13.
    M. Ruda, D. Farkas, and J. Abriata: Scripta Mater., 2002, vol. 46, pp. 349–55.CrossRefGoogle Scholar
  14. 14.
    G. Simonelli, R. Pasianot, and E. Savino: Mater. Res. Soc. Symp. Proc., 1993, vol. 291, pp. 567–76.Google Scholar
  15. 15.
    V. Shastry and D. Farkas: Model. Simul. Mater. Sci., 1996, vol. 4, pp. 473–92.CrossRefGoogle Scholar
  16. 16.
    D. Farkas, C.G. Schon, M.S.F. De Lima, and H. Goldenstein: Acta Mater., 1996, vol. 44, pp. 409–19.CrossRefGoogle Scholar
  17. 17.
    C. Vailhe and D. Farkas: Scripta Mater., 1998, vols. 1–2, p. 26.Google Scholar
  18. 18.
    S. Nedelcu and P. Kizler: Phys. Status Solidi A, 2002, vol. 1, pp. 26–34.CrossRefGoogle Scholar
  19. 19.
    C.J. McMahon: Interface Sci., 2004, vol. 12, pp. 141–46.CrossRefGoogle Scholar
  20. 20.
    C.J. McMahon: Eng. Fract. Mech., 2001, vol. 68, pp. 773–88.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • D. Farkas
    • 1
  • B. Hyde
    • 1
  • R. Nogueira
    • 2
  • M. Ruda
    • 3
  1. 1.the Department of Materials Science and EngineeringVirginia TechBlacksburg
  2. 2.Escola Politécnica, USPSao PauloBrazil
  3. 3.the Centro Atómico Bariloche, CNEABariloche and CRUB-Universidad Nacional del ComahueArgentina

Personalised recommendations