Metallurgical and Materials Transactions A

, Volume 36, Issue 4, pp 989–997 | Cite as

Modeling the ductile-brittle transition behavior in thermomechanically controlled rolled steels

  • S. J. Wu
  • C. L. Davis
  • A. Shterenlikht
  • I. C. Howard


The Charpy impact transition temperature (ITT) is well modeled for hot-rolled or normalized steels having uniform grain size using empirical equations. However, the ITT of nonhomogeneous steel microstructures, such as duplex (mixed fine and coarse) grain sizes, and the scatter in experimental Charpy energy values, observed in the transition region, are not accurately modeled. This article describes research on the microstructure-fracture property relationship and the prediction of the ITT using a cellular automata finite element (CAFE) model in thermomechanically controlled rolled (TMCR) Nb-microalloyed steels. The ferrite grain size distributions for two TMCR steel plates were analyzed and used for the prediction of the local fracture stress (σ F ) values based upon the Griffith model. It was found that the coarse grain size distribution could be used to predict the range of σ F values observed. The CAFE model was used to predict the ITT using the predicted σ F distribution for a TMCR steel. Results showed that the CAFE model realistically predicted the Charpy ITT; in particular, it was able to reproduce the scatter in values in the transition region. Within the model, the percentage of brittle failure and the upper shelf ductile energy were predicted well. However, the lower shelf brittle energy was overestimated due to computational limitations in the commercial FE software used with the current CAFE model.


Ferrite Material Transaction Grain Size Distribution Maximum Principal Stress Ductile Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


cB, cD

strain concentration coefficients for the ductile and the brittle CA arrays


parameter of the Rousselier’s model


grain size


initial void volume fraction in the Rousselier’s model


hardening term in the Rousselier’s model


Young’s modulus


Weibull modulus


Weibull modulus of the FE i


the mean Weibull modulus across all FEs in the plastic zone


probability of cleavage


applied load


general yield load


time at increment i


volume of ith FE


characteristic volume of material


integrity of a FE


percentage of brittle phase per FE

Ym(B), Ym(D)

state of cell m in the brittle or the ductile CA array


damage variable of the Rousselier’s model


critical value of the damage variable


effective surface energy


equivalent plastic strain


Poisson’s ratio


orientation angle of cell 1


grain misorientation threshold


dimensionless density


parameter of the Rousselier’s model


local fracture stress


Von Mises equivalent stress


the maximum principal stress


mean stress


reference stress


Weibull stress


yield stress


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Mintz, G. Peterson, and A. Nassar: Ironmaking and Steelmaking, 1994, vol. 21, pp. 215–22.Google Scholar
  2. 2.
    T. Gladman, D. Dulieu, and I.D. McIvor: Microalloying 75, Union Carbide Corp., New York, NY, 1977, pp. 32–55.Google Scholar
  3. 3.
    B. Mintz, W. B. Morrison, and A. Jones: Met. Technol., 1979, vol. 6, pp. 252–60.Google Scholar
  4. 4.
    W.E. Duckworth and J.D. Baird: J. Iron Steel Inst., 1969, vol. 207, pp. 854–71.Google Scholar
  5. 5.
    E.O. Hall: Proc. Phys. Soc., 1951, B64, pp. 747–53.Google Scholar
  6. 6.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 173, pp. 25–28.Google Scholar
  7. 7.
    T. Lin, A.G. Evans, and R.O. Ritchie: Metall. Trans. A, 1987, vol. 18A, pp. 641–51.Google Scholar
  8. 8.
    T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, p. 62.Google Scholar
  9. 9.
    C.L. Davis and M. Strangwood: J. Mater. Sci., 2002, vol. 37, pp. 1083–90.CrossRefGoogle Scholar
  10. 10.
    M.T. Shehata and J.D. Boyd: in Advances in Physical Metallurgy and Applications of Steels, Proc. Conf., TMS, Warrendale, PA, 1982, pp. 229–36.Google Scholar
  11. 11.
    J.H. Chen, L. Zhu, and H. Ma: Acta Metall. Mater., 1990, vol. 38, pp. 2527–35.CrossRefGoogle Scholar
  12. 12.
    J.H. Chen, G.Z. Wang, Z. Wang, L. Zhu, and Y.Y. Gao: Metall. Trans. A, 1991, vol. 22A, pp. 2287–96.Google Scholar
  13. 13.
    A. From and R. Sandstrom: Mater. Characterization, 1999, vol. 42, pp. 111–22.CrossRefGoogle Scholar
  14. 14.
    S.J. Wu and C.L. Davis: Paper presented at ICSMA13, Budapest, 2003, Mater. Sci. Eng. A, in press.Google Scholar
  15. 15.
    I.C. Howard, Z.H. Li, M.A. Sheikh, A.H. Sherry, D.P.G. Lidbury, and D.W. Beardsmore: IMechE Seminar, ‘20 Years of R6’, IMechE HQ, London, Nov. 20, 1996.Google Scholar
  16. 16.
    M.C. Burstow: Int. J. Pressure Vessels Piping, 2003, vol. 80, pp. 797–805.CrossRefGoogle Scholar
  17. 17.
    I.C. Howard, Z.H. Li, and M.A. Sheikh: Fatigue and Fracture Mechanics, 30th volume, ASTM STP 1360, P.C. Paris and K.L. Jerina, eds., ASTM, West Conshohocken, PA, 2000, pp. 152–68.Google Scholar
  18. 18.
    L. Xia and F.S. Shih: J. Mech. Phys. Solids, 1995, vol. 43, pp. 233–59.CrossRefGoogle Scholar
  19. 19.
    C. Ruggieri and R.H. Dodds: Int. J. Fracture, 1996, vol. 79, pp. 309–40.CrossRefGoogle Scholar
  20. 20.
    L. Xia and F.S. Shih: J. Mech. Phys. Solids, 1996, vol. 44, pp. 603–39.CrossRefGoogle Scholar
  21. 21.
    L. Xia and L. Cheng: Int. J. Fracture, 1997, vol. 87, pp. 289–306.CrossRefGoogle Scholar
  22. 22.
    F.M. Beremin: Metall. Trans. A, 1983, vol. 14A, pp. 2277–87.Google Scholar
  23. 23.
    A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15.Google Scholar
  24. 24.
    V. Tvergaard: Int. J. Fracture Mech., 1981, vol. 17, pp. 389–407.CrossRefGoogle Scholar
  25. 25.
    G. Rousselier, J.C. Devaux, G. Mottel, and G. Devesa: in Nonlinear Fracture Mechanics: Volume II—Elastic Plastic Fracture, J.D. Landes, A. Saxena, and J.G. Merkle, eds., ASTM STP 995, Philadelphia, PA, 1983, pp. 332–54.Google Scholar
  26. 26.
    G. Rousselier: Nucl. Eng. Design, 1987, vol. 105, pp. 97–111.CrossRefGoogle Scholar
  27. 27.
    A. Shterenlikht: Ph.D. Thesis, Sheffield University, 2003.Google Scholar
  28. 28.
    J.H. Beynon, S. Das, I.C. Howard, and A. Chterenlikht: in New and Emerging Computational Methods: Applications to Fracture, Damage and Reliability, F.W. Brust, ed., ASME, 2002, pp. 229–37.Google Scholar
  29. 29.
    J.H. Beynon, S. Das, I.C. Howard, E.J. Palmiere, and A. Chterenlikht: in ECF14, Fracture Mechanics Beyond 2000, A. Neimitz, I.V. Rokach, D. Kocanda, and K. Golos, eds., EMAS Publications, Sheffield, United Kingdom, 2002, pp. 241–48.Google Scholar
  30. 30.
    A. Shterenlikht and I.C. Howard: Proc. 15th Eur. Conf. of Fracture (ECF15), KTH, Stockholm, 2004.Google Scholar
  31. 31.
    S.J. Wu and C.L. Davis: Paper presented at the 10th EBSD Conf., Swansea, United Kingdom, 2003; J. Microsc., 2004, vol. 213, pp. 262–72.Google Scholar
  32. 32.
    S.J. Wu and J.F. Knott: Proc. Conf. on Structural Integrity in the 21st Century, J. Edwards et al., EMAS Publishing, 2000, pp. 247–55.Google Scholar
  33. 33.
    B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.Google Scholar
  34. 34.
    A.C. Knessi, G. Posch, C.I. Garcia, and A.J. DeArdo: Proc. Int. Symp. on Low-Carbon Steels for the 90’s, Pittsburgh, PA, R. Asfahani and G. Tither, eds., TMS, Warrendale, PA, 1993, pp. 113–19.Google Scholar
  35. 35.
    R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids. 1973, vol. 21, pp. 395–410.CrossRefGoogle Scholar
  36. 36.
    W.W. Gerberich and E. Kurman: Scripta Metall., 1985, vol. 18, pp. 295–98.Google Scholar
  37. 37.
    O.M.L. Yahya, F. Borit, R. Piques, and A. Pineau: Fatigue Fracture Eng. Mater. Struct., 1998, vol. 21 (12), pp. 1485–1502 DEC.CrossRefGoogle Scholar
  38. 38.
    P. Hausild, I. Nedbal, C. Berdin, and C. Prioul: Mater. Sci. Eng. A, 2002, vol. 335 (1–2), pp. 164–74.Google Scholar
  39. 39.
    S. Kim, S. Lee, and B.S. Lee: Mater. Sci. Eng. A, 2003, vol. 359 (1–2), pp. 198–209.Google Scholar
  40. 40.
    M.T. Todinov, M. Novovic, P. Bowen, and J.F. Knott: Mater. Sci. Eng. A, 2000, vol. 287, pp. 116–24.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • S. J. Wu
    • 1
  • C. L. Davis
    • 2
  • A. Shterenlikht
    • 3
  • I. C. Howard
    • 4
  1. 1.School of Materials Science and EngineeringBeijing University of Aeronautics and AstronauticsBeijingP.R. China
  2. 2.the Department of Metallurgy and MaterialsThe University of BirminghamBirminghamUnited Kingdom
  3. 3.Mechanical Science CentreUniversity of ManchesterManchesterUnited Kingdom
  4. 4.the Department of Mechanical EngineeringThe University of SheffieldSheffieldUnited Kingdom

Personalised recommendations