Metallurgical and Materials Transactions A

, Volume 36, Issue 4, pp 967–976 | Cite as

Role of nitrogen in the cyclic deformation behavior of duplex stainless steels

  • Hyong Jik Lee
  • Chong Soo Lee
  • Young Won Chang


The role of nitrogen in the cyclic deformation behavior of duplex stainless steels (DSS) has been studied under fully reversed total-strain amplitude. The cyclic hardening-softening curves show that cyclic stress levels become lower with increasing nitrogen content. The cyclic softening becomes more evident with increasing nitrogen content. It can be attributed to the greater strength of austenite than that of ferrite as plastic strain is accumulated beyond the critical strain. This is achieved by a higher strain hardening of austenite than that of ferrite with increasing nitrogen content. In this regard, the higher austenite volume fraction is also responsible for higher cyclic softening, resulting from much stronger strain partitioning in ferrite. Dislocation-structure observations reveal that severe strain localization in ferrite causes greater cyclic softening in the alloys with higher nitrogen content. The cyclic stress-strain response can be described in terms of two regimes with low and high plastic-strain amplitudes. In the former regime, the cyclic strain-hardening rates (CSHRs) become higher with increasing nitrogen content because austenite dominantly takes part in plastic deformation, being more strain hardened due to the higher nitrogen content in austenite. On the contrary, those in the high-plastic-strain-amplitude regime hardly change because ferrite, more dominantly accommodating plastic strain, rarely shows a change of strain-hardening behavior due to the similar nitrogen content in ferrite.


Ferrite Austenite Material Transaction Duplex Stainless Steel High Nitrogen Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.O. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700.Google Scholar
  2. 2.
    H.D. Solomon and T.M. Devine, Jr.: in Duplex Stainless Steels, R.A. Lula, ed., ASM, Metals Park, OH, 1985, pp. 693–756.Google Scholar
  3. 3.
    J. Charles: Duplex Stainless Steels ’91, J. Charles and S. Bernhardsson, eds., Les Editions de Physique, les Ulis, France, 1991, pp. 3–48.Google Scholar
  4. 4.
    R.W. Hayden and S. Floreen: Metall. Trans. A, 1973, vol. 4A, pp. 561–68.Google Scholar
  5. 5.
    T. Magnin and J.M. Lardon: Mater. Sci. Eng., 1988, vol. A104, pp. 21–28.Google Scholar
  6. 6.
    T. Magnin, J.M. Lardon, and L. Coudreuse: in Low Cycle Fatigue, ASTM STP 942, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis, eds., ASTM, Philadelphia, PA, 1988, pp. 812–23.Google Scholar
  7. 7.
    L. Llanes, A. Mateo, P. Villechaise, J. Méndez, and M. Anglada: Int. J. Fatigue, 1999, vol. 21, pp. S119-S125.CrossRefGoogle Scholar
  8. 8.
    J.B. Vogt: J. Mater. Proc. Technol., 2001, vol. 117, pp. 364–69.CrossRefGoogle Scholar
  9. 9.
    Y.B. Xia and Z.G. Wang: Mater. Sci. Eng., 1992, vol. A151, pp. 29–35.Google Scholar
  10. 10.
    J. Polák, T. Kruml, and S. Degallaix: Scripta Metall., 1993, vol. 29, pp. 1553–58.CrossRefGoogle Scholar
  11. 11.
    S. Degallaix, A. Seddouki, G. Degallaix, T. Kruml, and J. Polák: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 65–77.CrossRefGoogle Scholar
  12. 12.
    T. Kruml, J. Polák, K. Obrtlík, and S. Degallaix: Acta Mater., 1997, vol. 45, pp. 5145–51.CrossRefGoogle Scholar
  13. 13.
    L. Llanes, A. Mateo, L. Iturgoyen, and M. Anglada: Acta Mater., 1996, vol. 44, pp. 3967–78.CrossRefGoogle Scholar
  14. 14.
    A. Mateo, L. Llanes, L. Iturgoyen, and M. Anglada: Acta Mater., 1996, vol. 44, pp. 1143–53.CrossRefGoogle Scholar
  15. 15.
    J.B. Vogt, B.A. Saadi, and J. Foct: Z. Metallkd., 1999, vol. 90, pp. 323–28.Google Scholar
  16. 16.
    A. Mateo, A. Gironès, J. Keichel, L. Llanes, N. Akdut, and M. Anglada: Mater. Sci. Eng., 2001, vol. A314, pp. 176–85.Google Scholar
  17. 17.
    C.S. Goh and T.H. Yip: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3433–42.CrossRefGoogle Scholar
  18. 18.
    K.W. Nam, C.Y. Kang, J.Y. Do, S.H. Ahn, and S.K. Lee, Met. Mater. Int., 2001, vol. 7, pp. 227–31.CrossRefGoogle Scholar
  19. 19.
    P. Müllner, C. Solenthaler, P. Uggowitzer, and M.O. Speidel: Mater. Sci. Eng., 1993, vol. A164, pp. 164–69.Google Scholar
  20. 20.
    V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177–83.CrossRefGoogle Scholar
  21. 21.
    H.J. Lee and Y.W. Chang: Mater. Sci. Forum, 2003, vols. 426–432, pp. 951–56.CrossRefGoogle Scholar
  22. 22.
    Y.H. Park and Z.H. Lee, Mater. Sci. Eng., 2001, vol. A297, pp. 78–84.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Hyong Jik Lee
    • 1
  • Chong Soo Lee
    • 2
  • Young Won Chang
    • 2
  1. 1.Technical Research Laboratories, POSCOthe Wire Rod Research TeamPohangKorea
  2. 2.the Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations