Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 3, pp 657–666 | Cite as

Cold spray deposition of nanocrystalline aluminum alloys

  • Leonardo Ajdelsztajn
  • Julie M. Schoenung
  • Bertrand Jodoin
  • George E. Kim
Article

Abstract

Aluminum 5083 powder was mechanically milled under liquid nitrogen to achieve a nanocrystalline grain size in the range of 20 to 30 nm. The powder was subsequently sprayed using a nozzle designed with a validated numerical model for cold spray technology. The resulting coatings were evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro- and nanoindentation. The TEM analysis shows that the nanocrystalline grain structure of the cryomilled feedstock powder was retained after the cold spray process. A significant increase in hardness from 104 to 261±8 (HV300g) was observed when comparing the nanocrystalline coating with cast, cold-worked, Al 5083. The ability to use cold spray to produce nanocrystalline large deposits was also demonstrated in this work.

Keywords

Material Transaction Thermal Spray HVOF Cold Spray Cold Spray Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.C. Koch: Ann. Rev. Mater. Sci., 2003, vol. 5 (2), pp. 91–99.Google Scholar
  2. 2.
    E. Gaffet, N. Malhouroux, and M. Abdellaoui: J. Alloys Compounds, 1993, vol. 194, pp. 339–60.CrossRefGoogle Scholar
  3. 3.
    C. Suryanarayana: Int. Mater. Rev., 1995, vol. 40, pp. 41–64.Google Scholar
  4. 4.
    C.C. Koch: Nanostr. Mater., 1993, vol. 2, pp. 109–29.CrossRefGoogle Scholar
  5. 5.
    B.J.M. Aikin, T.H. Courtney, and D.R. Maurice: Mater. Sci. Eng., 1991, vol. A147, pp. 229–37.Google Scholar
  6. 6.
    F. Zhou, R. Luck, K. Lu, E.J. Lavernia, and M. Ruhle: Phil. Mag. A, 2002, vol. 82 (5), pp. 1003–15.CrossRefGoogle Scholar
  7. 7.
    C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.CrossRefGoogle Scholar
  8. 8.
    J. Eckert, J.C. Holzer, C.E. Kill III, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.Google Scholar
  9. 9.
    D. Oleszak and P.H. Shingu: J. Appl. Phys., 1996, vol. 79 (6), pp. 2975–80.CrossRefGoogle Scholar
  10. 10.
    C.C. Koch: Nanostr. Mater., 1997, vol. 9, pp. 13–22.CrossRefGoogle Scholar
  11. 11.
    F.A. Mohamed and Y. Xun: Mater. Sci. Eng. A, 2003, vol. 354A (1–2), pp. 133–39.Google Scholar
  12. 12.
    M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone: Mater. Res. Soc. Symp. Proc., 1989, vol. 132, pp. 79–86.Google Scholar
  13. 13.
    B. Huang, J. Vallone, and M.J. Luton: Nanostr. Mater., 1995, vol. 5, pp. 631–42.CrossRefGoogle Scholar
  14. 14.
    R.J. Perez, B. Huang, and E.J. Lavernia: Nanostr. Mater., 1996, vol. 7, pp. 565–72.CrossRefGoogle Scholar
  15. 15.
    J.C. Rawers, R.D. Govier, and G. Korth: Mater. Sci. Forum, 1995, vols. 179–181, pp. 363–68.CrossRefGoogle Scholar
  16. 16.
    F. Zhou, J. Lee, S. Dallek, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 3451–58.Google Scholar
  17. 17.
    F. Zhou, R. Rodriguez, and E.J. Lavernia: Mater. Sci. Forum, 2002, vol. 386–388, pp. 409–14.Google Scholar
  18. 18.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.CrossRefGoogle Scholar
  19. 19.
    X.K. Sun, H.T. Cong, M. Sun, and M.C. Yang: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1017–24.CrossRefGoogle Scholar
  20. 20.
    V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol 32A, pp. 2335–43.CrossRefGoogle Scholar
  21. 21.
    R.W. Hayes, R. Rodrigueza, and E.J. Lavernia: Acta Mater., 2001, vol. 49, pp. 4055–68.CrossRefGoogle Scholar
  22. 22.
    L. Ajdelsztajn, J. Lee, and E.J. Lavernia: Metall. Trans. A, 2002, vol. 33A, pp. 647–55.Google Scholar
  23. 23.
    L. Ajdelsztajn, F. Tang, G.E. Kim, V. Provenzano, and J.M. Schoenung: Mater. Sci. Eng. A, 2002, vol. A338, pp. 33–43.Google Scholar
  24. 24.
    L. Ajdelsztajn, J. He, G.E. Kim, V. Provenzano, E.J. Lavernia, and J.M. Schoenung: Materials Science II, Proc. TMS, San Diego, CA, Mar. 2003, TMS, Warrendale, PA, 2003, pp. 71–80.Google Scholar
  25. 25.
    A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin: Sov. Phys. Dokl., 1990, vol. 35 (12), pp. 1047–49.Google Scholar
  26. 26.
    C.J. Li and W.Y. Li: Surf. Coating Technol., 2003, vol. 167 (2–3), pp. 278–83.CrossRefGoogle Scholar
  27. 27.
    A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin: J. Appl. Mech. Tech. Phys., 1998, vol. 39 (2), pp. 318–23.CrossRefGoogle Scholar
  28. 28.
    R.C. Dykhuizen and R.A. Neiser: ITSC Proc., 2003, pp. 19–26.Google Scholar
  29. 29.
    A.N. Papyrin, V.F. Kosarev, S.V. Klinkov, and A.P. Alkhimov: ITSC Proc., 2002, pp. 380–84.Google Scholar
  30. 30.
    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye: Acta Mater., 2003, vol. 51, pp. 4379–94.CrossRefGoogle Scholar
  31. 31.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmorew, and R.A. Neiser: J. Thermal Spray Technol., 1999, vol. 8 (4), pp. 559–64.CrossRefGoogle Scholar
  32. 32.
    A.P. Alkhimov, S.V. Klkinkov, V.F. Kosarev, and A.N. Papyrin: J. Appl. Mech. Technol. Phys., 1997, vol. 38 (2), pp. 324–30.CrossRefGoogle Scholar
  33. 33.
    D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith: J. Thermal Spray Technol., 1999, vol. 8 (4), pp. 576–82.CrossRefGoogle Scholar
  34. 34.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teetse: Surf. Coating Technol., 2002, vol. 154, pp. 237–52.CrossRefGoogle Scholar
  35. 35.
    J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, and H. Hallen: ITSC Proc., 2001, pp. 417–22.Google Scholar
  36. 36.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teetse: Surf. Coating Technol., 1999, vol. 111, pp. 62–71.CrossRefGoogle Scholar
  37. 37.
    R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, and W. O’Neill: Mater. Lett., 2004, vol. 58, pp. 1317–20.CrossRefGoogle Scholar
  38. 38.
    V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16 (4), pp. 938–44.Google Scholar
  39. 39.
    R.W. Hayes, V. Tellkamp, and E.J. Lavernia: J. Mater. Res., 2000, vol. 15 (10), pp. 2215–22.Google Scholar
  40. 40.
    F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777–91.Google Scholar
  41. 41.
    B.Q. Han, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 2003, vol. 38 (15), pp. 3319–24.CrossRefGoogle Scholar
  42. 42.
    X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou, and E.J. Lavernia: Phil. Mag., 2003, vol. 83 (26), pp. 3065–75.CrossRefGoogle Scholar
  43. 43.
    B. Q. Han, E.J. Lavernia, and F.A. Mohamed: Phil. Mag. Lett., 2003, vol. 83, pp. 89–96.CrossRefGoogle Scholar
  44. 44.
    Structural Alloys Handbook, 1996 ed., John M. (Tim) Holt, technical ed., and C.Y. Ho, ed., CINDAS/Purdue University, West Lafayette, IN, 1996.Google Scholar
  45. 45.
    B. Jodoin: J. Thermal Spray Technol., 2002, vol. 11 (4), pp. 496–507.CrossRefGoogle Scholar
  46. 46.
    W.P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301–14.CrossRefGoogle Scholar
  47. 47.
    D. Cheng, G. Trapaga, J.W. McKelliget, and E.J. Lavernia: Modelling Simul. Mater. Sci. Eng., 2003, vol. 11, pp. R1-R31.CrossRefGoogle Scholar
  48. 48.
    A. Jameson: Trans. Am. Soc. Mech. Eng., 1983, vol. 50 (4b), pp. 1052–73.Google Scholar
  49. 49.
    A.H. Shapiro: The Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press Company, New York, NY, 1956.Google Scholar
  50. 50.
    X. Li and B. Bhushan: Mater. Characterization, 2002, vol. 48 pp. 11–36.CrossRefGoogle Scholar
  51. 51.
    C. Suryanarayana and H.G. Norton: X-Ray Diffraction: A Practical Approach, Plenum Press, New York, NY, 1998, p. 207.Google Scholar
  52. 52.
    Metals Handbook, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990.Google Scholar
  53. 53.
    M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch: Appl. Surf. Sci., 2003, vol. 219, pp. 211–27.CrossRefGoogle Scholar
  54. 54.
    B. Crossland: Explosive Welding of Metals and Its Application, Clarendon Press, Oxford, United Kingdom, 1982.Google Scholar
  55. 55.
    H. El-Sobky: in Explosive Welding, Forming and Compaction, T.Z. Blazynski, ed., Applied Science Publishers, London, 1983, ch. 6.Google Scholar
  56. 56.
    E.O. Hall: Proc. Phys. Soc. (London), 1951, vol. B64, pp. 747–53.Google Scholar
  57. 57.
    N.J. Petch: J. Iron. Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Leonardo Ajdelsztajn
    • 1
  • Julie M. Schoenung
    • 1
  • Bertrand Jodoin
    • 2
  • George E. Kim
    • 3
  1. 1.the Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavis
  2. 2.the Department of Mechanical EngineeringUniversity of OttawaCanada
  3. 3.the Perpetual TechnologiesMontrealCanada

Personalised recommendations