Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 3, pp 515–523 | Cite as

Assessment of a powder metallurgical processing route for refractory metal silicide alloys

  • P. Jéhanno
  • H. Kestler
  • A. Venskutonis
  • M. Böning
  • M. Heilmaier
  • B. Bewlay
  • M. Jackson
Article

Abstract

A powder metallurgical (PM) processing route for the manufacturing of two different refractory metal silicide alloys comprising inert gas atomization of presintered bars, hot isostatic pressing, and hot extrusion (reduction in cross section of 6:1) was established. The mechanical properties between room temperature and 1200 °C of the PM-processed Mo-3Si-1B and Nb-24Ti-20Si-5Cr-3Hf-2Al alloys (in wt pct) were assessed with tensile tests vs a state-of-the-art Ni-base single crystalline alloy (CMSX 4) and a directionally solidified (MASC) niobium-base silicide alloy, respectively. The microstructural characterization of both the hot-isostatically pressed and extruded materials was carried out applying scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) analysis. The Mo-Si-B alloy is characterized by an intermetallic matrix surrounding globular Mo particles in the hot isostatic press and a nearly continuous molybdenum solid solution matrix with dispersed intermetallic particles in the hot-extruded condition. Hot extrusion results in a substantial reduction of the DBTT of about 200 °C and tensile strengths superior to CMSX 4 at temperatures above 1000 °C. In the case of the Nb-base silicide alloy, a niobium solid solution surrounding intermetallic particles with Nb5Si3-type structure characterizes the final alloy. In the intermediate temperature range of 500 °C to 816 °C, a strength level equivalent to the directionally solidified MASC alloy was observed.

Keywords

Material Transaction DBTT Powder Metallurgical Molybdenum Silicide Niobium Silicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.S. Walston, K.S. O’Hara, E.W. Ross, T.S. Pollock, and W.H. Murphy: Proc. Conf. Superalloys 1996, R.D. Kissinger et al., eds., TMS, Warrendale, PA, 1996, pp. 27–34.Google Scholar
  2. 2.
    S. Bose and J. DeMasi-Marcin: Thermal Barrier Coating Workshop NASA Lewis Research Center, Cleveland, OH, 1995, NASA Conf. Publication 3312, pp. 63–77.Google Scholar
  3. 3.
    D.M. Dimiduk and J.H. Perepezko: MRS Bull., 2003, vol. 28, pp. 639–45.Google Scholar
  4. 4.
    R. Eck and J. Tinzl: Proc. Symp. AMAX Research Center, K.H. Riska, M. Semchysten, and E.P. Whelan, eds., AMAX Research Center, Ann Arbor, MI, 1985, pp. 21–28.Google Scholar
  5. 5.
    H. Nowotny, R. Kiefer, and F. Benesovsky: Plansee Berichte Pulvermetallurgie, 1957, vol. 5, pp. 86–93.Google Scholar
  6. 6.
    D.M. Berczik: U.S. Patent 5,595,616, 1997.Google Scholar
  7. 7.
    D.M. Berczik: U.S. Patent 5,693,616, 1997.Google Scholar
  8. 8.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Scripta Mater., 2004, vol. 50, pp. 459–64.CrossRefGoogle Scholar
  9. 9.
    M.R. Jackson and B.P. Bewlay: U.S. Patent 5,833,773, Nov. 10, 1998.Google Scholar
  10. 10.
    M.R. Jackson and B.P. Bewlay: U.S. Patent 5,932,033, Aug. 3, 1999.Google Scholar
  11. 11.
    M.R. Jackson and B.P. Bewlay: U.S. Patent 5,942,055, Aug 24, 1999.Google Scholar
  12. 12.
    M.R. Jackson, B.P. Bewlay, and J.-C Zhao: U.S. Patent 6,419,765, Jul. 16, 2002.Google Scholar
  13. 13.
    M.R. Jackson, B.P. Bewlay, and J.-C Zhao: U.S. Patent 6,428,910, Aug. 6, 2002.Google Scholar
  14. 14.
    P.R. Subramian, M.G. Mendiratta, and D.M. Dimiduk: U.S. Patent 5,741,376, Apr. 21, 1998.Google Scholar
  15. 15.
    B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson: JOM, 1997, Aug., pp. 44–45.Google Scholar
  16. 16.
    B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Proc. 1997 Conf. on Processing and Design Issues in High Temperature Materials, N.S. Stoloff and R.H. Jones, eds., TMS, Warrendale, PA, 1997, pp. 247–62.Google Scholar
  17. 17.
    B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3801–08.CrossRefGoogle Scholar
  18. 18.
    B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramian, M.G. Mendiratta, and J.J. Lewandowski: MRS Bull., 2003, vol. 28, pp. 646–53.Google Scholar
  19. 19.
    M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225–32.CrossRefGoogle Scholar
  20. 20.
    J.-C. Zhao, B.P. Bewlay, M.R. Jackson, and L.A. Peluso: Proc. 2001 Int. Symp. on Structural Intermetallics 2001, K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., TMS, Warrendale, PA, 2001, pp. 483–91.Google Scholar
  21. 21.
    P. Jéhanno, M. Heilmaier, and H. Kestler: Intermetallics, 2004, vol. 12, pp. 1005–09.CrossRefGoogle Scholar
  22. 22.
    G.J. Richardson, D.N. Hawkins, and C.M. Sellars: Worked Examples in Metalworking, The Institute of Metals, London, 1985.Google Scholar
  23. 23.
    C.A. Nunes, R. Sakidja, Z. Dong, and J.H. Perepezko: Intermetallics, 2000, vol. 8, p. 327–37.CrossRefGoogle Scholar
  24. 24.
    R.M. German: Powder Metallurgy Science, Metal Powder Industry Federation, Princeton, NJ, 1984.Google Scholar
  25. 25.
    H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.CrossRefGoogle Scholar
  26. 26.
    O. Kerle: In Plansee Catalogue, Refractory Metals and Alloys, 2002.Google Scholar
  27. 27.
    H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, New York, NY, 1982.Google Scholar
  28. 28.
    L. Northcott: Molybdenum, Butterworths Scientific Publications, London, 1956.Google Scholar
  29. 29.
    F. Schubert, H.-J. Penkalla, and L. Singheiser: Z. Metallkd., 2003, no. 94, vol. 6, pp. 705–10.Google Scholar
  30. 30.
    G.A. Geach and J.R. Hughes: Plansee Seminar Proc. 1955, Pergamon Press Ltd., London, 1956, pp. 245–53.Google Scholar
  31. 31.
    R.I. Jaffee, C.T. Sims, and J.J. Harwood: Plansee Seminar Proc. 1958, Pergamon Press Ltd., London, 1959, pp. 380–411.Google Scholar
  32. 32.
    B.P. Bewlay, R.R. Bishop, and M.R. Jackson: Z. Metallkd., 1996, no. 90, vol. 6, pp. 413–22.Google Scholar
  33. 33.
    S. Woodard, R. Raban, J. Myers, and D. Berczik: EP 1382700A1. European Patent Application 2004.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • P. Jéhanno
    • 1
  • H. Kestler
    • 1
  • A. Venskutonis
    • 1
  • M. Böning
    • 1
  • M. Heilmaier
    • 2
  • B. Bewlay
    • 3
  • M. Jackson
    • 3
  1. 1.the Technology CenterReutte in TirolAustria
  2. 2.the Institute of Materials Engineering and TestingOtto-von-Guericke Universität Magdeburg, Institut für Werkstofftechnik und WerkstoffprüfungMagdeburgGermany
  3. 3.the Global Research Center, General ElectricSchenectady

Personalised recommendations