Metallurgical and Materials Transactions A

, Volume 36, Issue 1, pp 99–105 | Cite as

Creep deformation characteristics of tin and tin-based electronic solder alloys

  • M. D. Mathew
  • H. Yang
  • S. Movva
  • K. L. Murty


Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures. The stress exponent (n=7.6, 5.0, and 5.0) and activation energy (Qc=60.3, 60.7, and 44.7 kJ/mol) values were obtained in the case of tin, Sn-3.5Ag, and Sn-5Sb respectively. Based on n and Qc values, it is suggested that the rate controlling creep-deformation mechanism is dislocation climb controlled by lattice diffusion in pure tin and Sn-3.5Ag alloy, and viscous glide controlled by pipe diffusion in Sn-5Sb alloy. The results on Sn-3.5Ag bulk material are compared with the initial results on solder bump arrays.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.T. Vianco and D.R. Frear: J. Met., 1993, vol. 45, pp. 14–19.Google Scholar
  2. 2.
    L.E. Felton, C.H. Taeder, and D.B. Knorr: J. Met., 1993, vol. 45, pp. 28–32.Google Scholar
  3. 3.
    K.L. Murty, H. Yang, P. Deane, and P. Magill: EEP-Vol. 19-1, Advanced Electronic Packaging, ASME, Philadelphia, PA, 1997, pp. 1221–31.Google Scholar
  4. 4.
    R.N. Wild: Report Nos. IBM/73Z00421 and 74Z0048, New York, NY, 1973.Google Scholar
  5. 5.
    D. Hanson and E.J. Sanford: J. Inst. Met., 1938, vol. 62, pp. 215–37.Google Scholar
  6. 6.
    J.S. Hwang: Solder Paste in Electronic Packaging, van Nostrand Reinhold, New York, NY, 1989.Google Scholar
  7. 7.
    K.L. Murty and I. Turlik: Proc. J. ASME/JSME, 1992, vol. 1, pp. 309–18.Google Scholar
  8. 8.
    E.S. Hedges: Tin and Its Alloys, Edward Arnold Publishers Ltd., London, 1960, p. 53.Google Scholar
  9. 9.
    J. Askill: Tracer Diffusion Data for Metals, Alloys and Simple Oxides, IFI Plenum, New York, NY, 1970, pp. 31–41.Google Scholar
  10. 10.
    O.D. Sherby: Acta Metall., 1979, vol. 27, pp. 387–94.CrossRefGoogle Scholar
  11. 11.
    J.E. Bird, A.K. Mukherjee, and J.E. Dorn: Quantitative Relation between Properties and Microstructure, Israel University Press, Jerusalem, 1969, pp. 255–82.Google Scholar
  12. 12.
    K.L. Murty: in Creep and Fracture of Engineering Materials and Structures, J.C. Earthman and F.A. Mohamed, eds., TMS, Warrendale, PA, 1997, pp. 739–47.Google Scholar
  13. 13.
    K.L. Murty and O. Kanert: J. Appl. Phys., 1990, vol. 67, pp. 2866–92.CrossRefGoogle Scholar
  14. 14.
    J.E. Breen and J. Weertman: J. Met., 1955, vol. 72, pp. 1230–34.Google Scholar
  15. 15.
    P.J. Fensham: Austr. J. Sci. Res., 1950, vol. 3A, p. 91.Google Scholar
  16. 16.
    J.D. Meakin and E. Klokholm: Trans. TMS-AIME, 1960, vol. 218, pp. 463–66.Google Scholar
  17. 17.
    G. Pawlicki: Nukleonika, 1967, vol. 12, p. 1123.Google Scholar
  18. 18.
    C. Coston and N.H. Nachtrieb: J. Phys. Chem., 1964, vol. 68, p. 1123.Google Scholar
  19. 19.
    S.Z. Bokhstein, S.T. Kishkin, and L.M. Moroz: Investigation of the Structure of Metals by Radioactive Isotope Methods, State Publishing House, Moscow, 1961.Google Scholar
  20. 20.
    W. Chomba and J. Andrewskiewicz: Nukleonika, 1960, vol. 5, p. 611.Google Scholar
  21. 21.
    R.E. Frenkel, O.D. Sherby, and J.E. Dorn: Acta Metall., 1955, vol. 3, p. 470.CrossRefGoogle Scholar
  22. 22.
    F.A. Mohamed, K.L. Murty, and J.W. Morris: Metall. Trans., 1973, vol. 4, pp. 935–39.Google Scholar
  23. 23.
    P. Adeva, G. Caruanan, O.A. Ruano, and M. Torralba: Mater. Sci. Eng. A, 1995, vol. 194, pp. 17–23.CrossRefGoogle Scholar
  24. 24.
    V. Raman and R. Berriche: J. Mater. Res., 1992, vol. 7, pp. 627–38.Google Scholar
  25. 25.
    S.N.G. Chu and J.C.M. Li: Mater. Sci. Eng., 1979, vol. 39, pp. 1–10.CrossRefGoogle Scholar
  26. 26.
    S.H. Suh, J.B. Cohen, and J. Weertman: Metall. Trans. A, 1983, vol. 14A, p. 117.Google Scholar
  27. 27.
    O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1967, vol. 1, pp. 325–90.Google Scholar
  28. 28.
    D. Grivas, K.L. Murty, and J.W. Morris: Acta Metall., 1979, vol. 27, pp. 731–37.CrossRefGoogle Scholar
  29. 29.
    R. Darveaux: IEEE Trans. Components, Hybrids Manufacturing Technol., 1992, vol. 15, pp. 1013–24.CrossRefGoogle Scholar
  30. 30.
    K.L. Murty: Scripta Metall., 1973, vol. 7, pp. 899–903.CrossRefGoogle Scholar
  31. 31.
    T.G. Langdon: Dislocations and Properties, The Institute of Metals, London, 1985, 221–37.Google Scholar
  32. 32.
    K.L. Murty, H. Yang, H.P. Deane, and L. Turlik: Proc. 3rd Pacific Rim Int. Conf. on Advanced Materials and Processing (PRICM), M.A. Imam, et al., TMS, Warrendale, 1997, vol. II, pp. 2581–88.Google Scholar
  33. 33.
    K.L. Murty, M.D. Mathew, Y. Wang, and F.M. Haggag: in Modeling the Mechanical Response of Structural Materials, Eric M. Taleff and Rao K. Mahidhara, eds., TMS, Warrendale, PA, 1998, pp. 145–52.Google Scholar
  34. 34.
    O.D. Sherby and J. Weertman: Acta Metall., 1979, vol. 27, p. 387.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • M. D. Mathew
    • 1
  • H. Yang
    • 2
  • S. Movva
    • 3
  • K. L. Murty
    • 4
  1. 1.the Indira Gandhi Center for Atomic ResearchKalpakkamIndia
  2. 2.AMCCSan Diego
  3. 3.Qualcomm CDMA TechnologiesSan Diego
  4. 4.North Carolina State UniversityRaleigh

Personalised recommendations