Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 9, pp 2449–2454 | Cite as

Microstructure development in finely atomized droplets of copper-iron alloys

  • Jie He
  • Jiu-Zhou Zhao
  • Xiao-Feng Wang
  • Ling-Ling Gao
Article

Abstract

The solidification behavior of Cu(100-X)FeX (X = 15, 20, 30, and 40) alloys was investigated by gas atomization technology. The effects of the size and composition of the atomized droplet on the microstructure development during cooling through the metastable miscibility gap have been discussed. A smaller atomized droplet achieves a finer dispersed microstructure. Alloys of composition close to the critical composition of the alloy system are relatively easy to undercool into the miscibility gap. The forces acting on the Fe-rich sphere during the liquid-liquid phase transformation were analyzed. The formation of an Fe-poor layer on the powder surface is the result of the common action of the Fe-rich sphere’s Marangoni migration and the repulsive interaction between the cellular solid/liquid interface and the solidified Fe-rich sphere. The Fe-rich spheres in the center part of the powder are entrapped between the equiaxed grains of Cu-rich phase and finally distributed at the grain boundaries and triple junctions.

Keywords

Material Transaction Triple Junction Critical Composition Solidification Interface Atomize Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.J. Swartzendruber: in Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASME, New York, NY, 1990, pp. 1408–09.Google Scholar
  2. 2.
    Y. Nakagawa: Acta Metall., 1958, vol. 6, pp. 704–11.CrossRefGoogle Scholar
  3. 3.
    Y.-Y. Chuang, R. Schmid, and Y.A. Chang: Metall. Trans. A, 1984, vol. 15 A, pp. 1921–30.Google Scholar
  4. 4.
    Q. Chen and Z.P. Jin: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 417–26.Google Scholar
  5. 5.
    S.P. Elder, A. Munitz, and G.J. Abbaschian: Mater. Sci. Forum, 1989, vol. 50, pp. 137–50.CrossRefGoogle Scholar
  6. 6.
    G. Wilde, R. Willnecker, R.N. Singh, and F. Sommer: Z. Metallkd., 1997, vol. 88, pp. 804–09.Google Scholar
  7. 7.
    G. Wilde and H.J. Perepezko: Acta Mater., 1999, vol. 47, pp. 3009–21.CrossRefGoogle Scholar
  8. 8.
    A. Munitz: Metall. Trans. B, 1987, vol. 18B, pp. 565–75.Google Scholar
  9. 9.
    X.Y. Lu, C.D. Cao, and B. Wei: Mater. Sci. Eng. A, 2001, vol. 313A, pp. 198–206.Google Scholar
  10. 10.
    W.J. Yao, X.J. Han, and B. Wei: Chin. Sci. Bull., 2000, vol. 47, pp. 826–32.Google Scholar
  11. 11.
    G.E. Pellissier and S.M. Purdy: in Stereology and Quantitative Metallography, E.E. Underwood, ed., ASTM, New York, NY, 1979, pp. 1–30.Google Scholar
  12. 12.
    J.Z. Zhao, J.J. Guo, J. Jia, and Q.C. Li: Trans. Nonferr. Met. Soc., 1995, vol. 5, pp. 85–87.Google Scholar
  13. 13.
    N.O. Young, J.S. Goldstein, and M.J. Block: J. Fluid Mech., 1959, vol. 6, pp. 350–56.CrossRefGoogle Scholar
  14. 14.
    M.G. Velarde: in Materials and Fluid under Gravity, L. Ratke, ed., Springer, Berlin, 1995, pp. 283–98.Google Scholar
  15. 15.
    W.R. Hu: Microgravity Fluid Mechanics, Science Press, Beijing, 1999, pp. 1–201.Google Scholar
  16. 16.
    J.W. Cahn and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28, pp. 258–67.CrossRefGoogle Scholar
  17. 17.
    F.R. Juretzko, B.K. Dhindaw, D.M. Stefanescu, S. Sen, and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1691–6.CrossRefGoogle Scholar
  18. 18.
    D.R. Uhlmann, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35, pp. 2986–93.CrossRefGoogle Scholar
  19. 19.
    D. Coupard, F. Girot, and J.M. Quenisset: J. Mater. Sci., 1996, vol. 31, pp. 5305–08.CrossRefGoogle Scholar
  20. 20.
    A.M. Zubko, V.G. Lobanov, and V.V. Nikonova: Sov. Phys. Crystallogr., 1973, vol. 18, pp. 239–45.Google Scholar
  21. 21.
    M.K. Surappa and P.K. Rohatgi: J. Mater. Sci. Lett., 1981, vol. 16, pp. 765–69.Google Scholar
  22. 22.
    G. Pottlacher: J. Non-Cryst. Solids, 1999, vol. 251, pp. 177–81.CrossRefGoogle Scholar
  23. 23.
    V.Y. Zinovyev, V.F. Polev, S.G. Taluts, G.P. Zinovyeva, and S.A. Ilinykh: Phys. Met. Metall., 1986, vol. 61, pp. 85–92.Google Scholar
  24. 24.
    V.Ye. Zinovyev, S.G. Taluts, M.G. Kamashev, B.V. Vlasov, and V.P. Polyakova: Phys. Met. Metall., 1994, vol. 77, pp. 49–58.Google Scholar
  25. 25.
    R. Asthana and S.N. Tewari: J. Mater. Sci., 1993, vol. 28, pp. 5414–25.CrossRefGoogle Scholar
  26. 26.
    D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, and A. Moitra: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 2847–55.Google Scholar
  27. 27.
    D. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 669–80.Google Scholar
  28. 28.
    W.D. Cai and E.J. Lavernia: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1085–96.Google Scholar
  29. 29.
    T. Suzuki, S. Toyoda, T. Umeda, and Y. Kimara: J. Cryst. Growth, 1977, vol. 38, pp. 123–28.CrossRefGoogle Scholar
  30. 30.
    T. Tanaka, K. Hack, T. Iida, and S. Hara: Z. Metallkd., 1996, vol. 87, pp. 380–89.Google Scholar
  31. 31.
    X.J. Liu, I. Ohnuma, C.P. Wang, M. Jiang, R. Kainuma, K. Ishida, M. Ode, T. Koyama, H. Onodera, and T. Suzuki: J. Electron. Mater., 2003, vol. 32, pp. 1265–72.CrossRefGoogle Scholar
  32. 32.
    C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2002, vol. 297, pp. 990–93.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Jie He
    • 1
  • Jiu-Zhou Zhao
    • 1
  • Xiao-Feng Wang
    • 1
  • Ling-Ling Gao
    • 1
  1. 1.Institute of Metal ResearchChinese Academy of SciencesPeople’s Republic of China

Personalised recommendations