Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 9, pp 2393–2402 | Cite as

Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: Role of microstructure

  • J. J. Kruzic
  • J. H. Schneibel
  • R. O. Ritchie
Article

Abstract

Ambient- to elevated-temperature fracture and fatigue-crack growth results are presented for five Mo-Mo3Si-Mo5SiB2-containing α-Mo matrix (17 to 49 vol pct) alloys, which are compared to results for intermetallic-matrix alloys with similar compositions. By increasing the α-Mo volume fraction, ductility, or microstructural coarseness, or by using a continuous α-Mo matrix, it was found that improved fracture and fatigue properties are achieved by promoting the active toughening mechanisms, specifically crack trapping and crack bridging by the α-Mo phase. Crack-initiation fracture toughness values increased from 5 to 12 MPa√m with increasing α-Mo content from 17 to 49 vol pct, and fracture toughness values rose with crack extension, ranging from 8.5 to 21 MPa√m at ambient temperatures. Fatigue thresholds benefited similarly from more α-Mo phase, and the fracture and fatigue resistance was improved for all alloys tested at 1300 °C, the latter effects being attributed to improved ductility of the α-Mo phase at elevated temperatures.

Keywords

Material Transaction Fatigue Threshold Initiation Toughness Crack Trapping Molybdenum Silicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Donachie: Superalloys: A Technical Guide, 2nd ed., ASM, Metals Park, OH, 2002, p. 439.Google Scholar
  2. 2.
    M.K. Meyer, M.J. Kramer, and M. Akinc: Intermetallics, 1996, vol. 4, pp. 273–81.CrossRefGoogle Scholar
  3. 3.
    M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thom, J.J. Heubsch, and B. Cook: Mater. Sci. Eng., 1999, vol. A261, pp. 16–23.Google Scholar
  4. 4.
    M.K. Meyer and M. Akinc: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2763–66.CrossRefGoogle Scholar
  5. 5.
    M.K. Meyer, A.J. Thom, and M. Akinc: Intermetallics, 1999, vol. 7, pp. 153–62.CrossRefGoogle Scholar
  6. 6.
    D.M. Berczik: United Technologies Corporation, East Hartford, CT, U.S. Patent 5,595,616, 1997.Google Scholar
  7. 7.
    D.M. Berczik: United Technologies Corporation, East Hartford, CT, U.S. Patent 5,693,156, 1997.Google Scholar
  8. 8.
    H. Choe, D. Chen, J.H. Schneibel, and R.O. Ritchie: Intermetallics, 2001, vol. 9, pp. 319–29.CrossRefGoogle Scholar
  9. 9.
    H. Choe, J.H. Schneibel, and R.O. Ritchie: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 25–239.Google Scholar
  10. 10.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Scripta Mater., 2004, vol. 50, pp. 459–64.CrossRefGoogle Scholar
  11. 11.
    J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 525–31.Google Scholar
  12. 12.
    J.H. Schneibel, M.J. Kramer, and D.S. Easton: Scripta Mater., 2002, vol. 46, pp. 217–21.CrossRefGoogle Scholar
  13. 13.
    ASTM E561-98: Annual Book of ASTM Standards, vol. 03.01, Metals-Mechanical Testing; Elevated and Low-Temperature Tests; Metallography, ASTM, West Conshohocken, PA, 2002, pp. 534–46.Google Scholar
  14. 14.
    C.J. Gilbert, J.M. McNaney, R.H. Dauskardt, and R.O. Ritchie: J. Testing Eval., 1994, vol. 22, pp. 117–20.Google Scholar
  15. 15.
    D. Chen, C.J. Gilbert, and R.O. Ritchie: J. Testing Eval., 2000, vol. 28, pp. 236–41.Google Scholar
  16. 16.
    ASTM E647-00: Annual Book of ASTM Standards, vol. 03.01, Metals-Mechanical Testing: Elevated and Low-temperature Tests; Metallography, ASTM, West Conshohocken, PA, 2002, pp. 595–635.Google Scholar
  17. 17.
    D.M. Dimiduk and J.H. Perepezko: MRS Bull., 2003, vol. 28, pp. 639–45.Google Scholar
  18. 18.
    K.T. Venkateswara Rao, W.O. Soboyejo, and R.O. Ritchie: Metall. Trans. A, 1992, vol. 23A, pp. 2249–57.Google Scholar
  19. 19.
    I. Rosales and J.H. Schneibel: Intermetallics, 2000, vol. 8, pp. 885–89.CrossRefGoogle Scholar
  20. 20.
    C.F. Shih: J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–26.CrossRefGoogle Scholar
  21. 21.
    A. Buch: Pure Metals Properties: a Scientific-Technical Handbook, ASM INTERNATIONAL, Materials Park, OH, 1999, p. 306.Google Scholar
  22. 22.
    K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp. 591–602.CrossRefGoogle Scholar
  23. 23.
    J.G. Swadener, I. Rosales, and J.H. Schneibel: in High-Temperature Ordered Intermetallic Alloys IX, J.H. Schneibel, S. Hanada, K.J. Hemker, R.D. Noebe, and G. Sauthoff, eds., Materials Research Society, Warrendale, PA, 2001, pp. N4.2.1-N4.2.6.Google Scholar
  24. 24.
    R.O. Ritchie: Int. J. Fract., 1999, vol. 100, pp. 55–83.CrossRefGoogle Scholar
  25. 25.
    J.H. Schneibel, C.T. Liu, D.S. Easton, and C.A. Carmichael: Mater. Sci. Eng., 1999, vol. A261, pp. 78–83.Google Scholar
  26. 26.
    J.H. Schneibel, P.F. Tortorelli, M.J. Kramer, A.J. Thom, J.J. Kruzic, and R.O. Ritchie: in Defect Properties and Related Phenomena in Intermetallic Alloys, E.P. George, M.J. Mills, H. Inui, and G. Eggeler, eds., Materials Research Society, Warrendale, PA, 2003, pp. 53–58.Google Scholar
  27. 27.
    V. Supatarawanich, D.R. Johnson, and C.T. Liu: Mater. Sci. Eng., 2003, vol. A344, pp. 328–39.Google Scholar
  28. 28.
    J.H. Schneibel: Intermetallics, 2003, vol. 11, pp. 625–32.CrossRefGoogle Scholar
  29. 29.
    A. Kumar and B.L. Eyre: Proc. R. Soc. London A, 1980, vol. 370, pp. 431–58.CrossRefGoogle Scholar
  30. 30.
    J. Wadsworth, T.G. Nieh, and J.J. Stephens: Scripta Mater., 1986, vol. 20, pp. 637–42.CrossRefGoogle Scholar
  31. 31.
    N.E. Promisel: The Science and Technology of Tungsten, Tantalum, Molybdenum, Niobium and Their Alloys, Pergamon Press, The MacMillan Company, New York, NY, 1964, p. 588.Google Scholar
  32. 32.
    L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans: Acta Metall., 1988, vol. 36, pp. 945–53.CrossRefGoogle Scholar
  33. 33.
    M.F. Ashby, F.J. Blunt, and M. Bannister: Acta Metall., 1989, vol. 37, pp. 1847–57.CrossRefGoogle Scholar
  34. 34.
    B.D. Flinn, M. Rühle, and A.G. Evans: Acta Metall., 1989, vol. 37, pp. 3001–06.CrossRefGoogle Scholar
  35. 35.
    D.R. Bloyer, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2483–96.CrossRefGoogle Scholar
  36. 36.
    J.P. Campbell, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 563–77.CrossRefGoogle Scholar
  37. 37.
    R.W. Steinbrech, A. Reichl, and W. Schaarwächter: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2009–15.CrossRefGoogle Scholar
  38. 38.
    B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski: MRS Bull., 2003, vol. 29, pp. 646–53.Google Scholar
  39. 39.
    B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3801–08.CrossRefGoogle Scholar
  40. 40.
    J.D. Rigney and J.J. Lewandowski: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3292–306.Google Scholar
  41. 41.
    W.A. Zinsser, Jr. and J.J. Lewandowski: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1749–57.CrossRefGoogle Scholar
  42. 42.
    K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1833–49.Google Scholar
  43. 43.
    C.J. Gilbert, J.J. Cao, W.J. Moberly Chan, L.C. De Jonghe, and R.O. Ritchie: Acta Metall. Mater., 1996, vol. 44, pp. 3199–214.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • J. J. Kruzic
    • 1
  • J. H. Schneibel
    • 2
  • R. O. Ritchie
    • 3
  1. 1.the Department of Mechanical EngineeringOregon State UniversityCorvallis
  2. 2.Oak Ridge National LaboratoryMetals and Ceramics DivisionOak Ridge
  3. 3.the Materials Sciences Division, Lawrence Berkeley National Laboratory, and the Department of Materials Science and EngineeringUniversity of CaliforniaBerkeley

Personalised recommendations