Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 11, pp 3127–3139 | Cite as

Crystal-plasticity analysis of ridging in ferritic stainless steel sheets

  • Olaf Engler
  • Moo-Young Huh
  • Carlos N. Tomé
Article

Abstract

The occurrence of ridging in ferritic stainless steel (FSS) sheets is caused by the collective deformation of bandlike clusters of grains with a similar crystallographic orientation. In this article, largescale (1.8×3.6 mm) orientation maps obtained by electron backscattered diffraction (EBSD) are input into a viscoplastic self-consistent polycrystal plasticity model to analyze the strain anisotropy caused by the topographic arrangement of the recrystallization-texture orientations. Two versions of the ridging model were devised: (1) the local dispersion in strain-rate components is analyzed for the full EBSD map, and (2) narrow bands in the EBSD maps aligned parallel to the ridges on the sheet surface are considered, and the variation in macroscopic strain response from band to band is derived. The effects caused by spatial variations in through-thickness strains and in out-of-plane shears are compared and related to ridging. The model is applied to two sheets distinguished by different levels of ridging.

Keywords

Material Transaction FERRITIC Stainless Steel Intermediate Annealing Strain Anisotropy Ridging Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.C. Chao: Trans. ASM, 1967, vol. 60, pp. 37–50.Google Scholar
  2. 2.
    R.N. Wright: Metall. Trans., 1972, vol. 3, pp. 83–91.Google Scholar
  3. 3.
    H. Takechi, H. Kato, T. Sunami, and T. Nakayama: Trans. JIM, 1967, vol. 31, pp. 717–23.Google Scholar
  4. 4.
    T. Sheppard and P. Richards: Mater. Sci. Technol., 1986, vol. 2, pp. 693–99.Google Scholar
  5. 5.
    J.A. Salsgiver, J.M. Larsen, and P.R. Borneman: Recrystallization ’90, T. Chandra, ed., TMS, Warrendale PA, 1990, pp. 849–54.Google Scholar
  6. 6.
    H.M. Kim and J.A. Szpunar: Mater. Sci. Forum, 1994, vols. 157–162, pp. 753–60.Google Scholar
  7. 7.
    D. Raabe and K. Lücke: Mater. Sci. Technol., 1993, vol. 9, pp. 302–12.Google Scholar
  8. 8.
    Y. Shimizu, Y. Ito, and Y. Iida: Metall. Trans. A, 1986, vol. 17A, pp. 1323–34.Google Scholar
  9. 9.
    N. Tsuji, K. Tsuzaki, and T. Maki: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 1008–17.Google Scholar
  10. 10.
    H.-G. Appel and H. Becker: Z. Metallkd., 1963, vol. 54, pp. 724–28.Google Scholar
  11. 11.
    M. Arakawa, S. Takemura, and T. Ooka: Trans. Iron Steel Inst. Jpn., 1971, vol. 11, pp. 890–94.Google Scholar
  12. 12.
    M.Y. Huh and O. Engler: Mater. Sci. Eng. A, 2001, vol. A308, pp. 74–87.Google Scholar
  13. 13.
    M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, and D. Raabe: Steel Res. Int., 2005, in press.Google Scholar
  14. 14.
    V. Randle and O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach Science Publishers, Amsterdam, 2000.Google Scholar
  15. 15.
    K. Bethke, M. Hölscher, and K. Lücke: Mater. Sci. Forum, 1994, vols. 157–162, pp. 1137–44.CrossRefGoogle Scholar
  16. 16.
    M. Brochu, T. Yokota, and S. Satoh: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 872–77.Google Scholar
  17. 17.
    S.H. Park, W.Y. Kim, Y.D. Lee, and C.G. Park: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 100–05.Google Scholar
  18. 18.
    H.J. Shin, J.K. An, S.H. Park, and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 4693–4706.CrossRefGoogle Scholar
  19. 19.
    A.J. Beaudoin, J.D. Bryant, and D.A. Korzekwa: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2323–31.Google Scholar
  20. 20.
    D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, and Z. Zhao: Acta Mater., 2003, vol. 51, pp. 1539–60.CrossRefGoogle Scholar
  21. 21.
    P.D. Wu, D.J. Lloyd, A. Bosland, H. Jin, and S.R. MacEwen: Acta Mater., 2003, vol. 51, pp. 1945–57.CrossRefGoogle Scholar
  22. 22.
    Z. Zhao, R. Radovitzky, and A. Cuitiño: Acta Mater., 2004, vol. 52, pp. 5791–5804.CrossRefGoogle Scholar
  23. 23.
    R.D. Knutsen and N.J. Wittridge, Mater. Sci. Technol., 2002, vol. 18, pp. 1279–85.CrossRefGoogle Scholar
  24. 24.
    R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRefGoogle Scholar
  25. 25.
    C.N. Tomé and R.A. Lebensohn: in Continuum Scale Simulation of Engineering Materials: Fundamentals, Microstructures, Process Applications, D. Raabe, F. Roters, F. Barlat, and L.Q. Chen, eds., Wiley-VCH, Weinheim, Germany, 2004, pp. 473–99.CrossRefGoogle Scholar
  26. 26.
    C.N. Tomé: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 723–38.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Olaf Engler
    • 1
  • Moo-Young Huh
    • 2
  • Carlos N. Tomé
    • 3
  1. 1.the R&D Center BonnHydro Aluminium Deutschland GmbHBonnGermany
  2. 2.the Division of Materials Science and EngineeringKorea UniversitySeoulKorea
  3. 3.the Materials Science and Technology DivisionLos Alamos National LaboratoryLos Alamos

Personalised recommendations