Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1927–1936 | Cite as

Nanostructured Ni-Co alloys with tailorable grain size and twin density

  • B. Y. C. Wu
  • C. A. Schuh
  • P. J. Ferreira
Article

Abstract

We present an experimental approach to systematically produce nanostructures with various grain sizes and twin densities in the Ni-Co binary system. Using electrodeposition with various applied current densities and organic additive contents in the deposition bath, we synthesize nanostructured fcc and hcp solid solutions with a range of compositions. Due to the low stacking fault energy (SFE) of these alloys, growth twins are readily formed during deposition, and by adjusting the deposition conditions, a range of twin boundary densities is possible. The resulting nanostructured alloys cannot be described by a single characteristic length scale, but instead must be characterized in terms of (1) a true grain size pertaining to general high-angle grain boundaries and (2) an effective grain size that incorporates twin boundaries. Analysis of Hall-Petch strength scaling for these materials is complicated by their dual length scales, but the hardness trends found in Ni-80Co are found to be roughly in line with those seen in pure nanocrystalline nickel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. Van Swygenhoven: MRS Bull., 1999, vol. 24, pp. 44–50.Google Scholar
  2. 2.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743–74.CrossRefGoogle Scholar
  3. 3.
    C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: MRS Bull., 1999, vol. 24, pp. 54–58.Google Scholar
  4. 4.
    H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.CrossRefGoogle Scholar
  5. 5.
    E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747–53.Google Scholar
  6. 6.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  7. 7.
    T.G. Nieh and J. Wadsworth: Scripta Metall. Mater., 1991, vol. 25, pp. 955–58.CrossRefGoogle Scholar
  8. 8.
    J. Schiotz, F.D. DiTolla, and K.W. Jacobsen: Nature, 1998, vol. 391, pp. 561–63.CrossRefGoogle Scholar
  9. 9.
    Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo: Scripta Mater., 2003, vol. 48, pp. 825–30.CrossRefGoogle Scholar
  10. 10.
    A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust: Scripta Metall. Mater., 1992, vol. 27, pp. 1185–88.CrossRefGoogle Scholar
  11. 11.
    C.A. Schuh, T.G. Nieh, and T. Yamasaki: Scripta Mater., 2002, vol. 46, pp. 735–40.CrossRefGoogle Scholar
  12. 12.
    C.A. Schuh, T.G. Nieh, and H. Iwasaki: Acta Mater., 2003, vol. 51, pp. 431–43.CrossRefGoogle Scholar
  13. 13.
    J. Schiotz, T. Vegge, F.D. DiTolla, and K.W. Jacobsen: Phys. Rev., 1999, vol. B60, pp. 11971–11983.Google Scholar
  14. 14.
    V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2002, vol. 50, pp. 61–73.CrossRefGoogle Scholar
  15. 15.
    V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2002, vol. 50, pp. 5005–20.CrossRefGoogle Scholar
  16. 16.
    V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Acta Mater., 2001, vol. 49, pp. 2713–22.CrossRefGoogle Scholar
  17. 17.
    H. Van Swygenhoven and A. Caro: Appl. Phys. Lett., 1997, vol. 71, pp. 1652–54.CrossRefGoogle Scholar
  18. 18.
    H. Van Swygenhoven, A. Caro, and D. Farkas: Scripta Mater., 2001, vol. 44, pp. 1513–16.CrossRefGoogle Scholar
  19. 19.
    H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Phys. Rev., 2002, vol. B66, p. 024101.Google Scholar
  20. 20.
    H. Van Swygenhoven, M. Spaczer, and A. Caro: Acta Mater., 1999, vol. 47, pp. 3117–26.CrossRefGoogle Scholar
  21. 21.
    H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas: Phys. Rev., 1999, vol. B60, pp. 22–25.Google Scholar
  22. 22.
    A.C. Lund, T.G. Nieh, and C.A. Schuh: Phys. Rev. B, 2004, vol. 69, 012101.CrossRefGoogle Scholar
  23. 23.
    V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2003, vol. 51, pp. 4135–47.CrossRefGoogle Scholar
  24. 24.
    H. Van Swygenhoven, P. Derlet, and A. Froseth: Nature Mater., 2004, vol. 3, p. 399.CrossRefGoogle Scholar
  25. 25.
    A. Froseth, H. Van Swygenhoven, and P. Derlet: Acta Mater., 2004, vol. 52, pp. 2259–68.CrossRefGoogle Scholar
  26. 26.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.CrossRefGoogle Scholar
  27. 27.
    E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, and K. Lu: Appl. Phys. Lett., 2004, vol. 85, pp. 4932–34.CrossRefGoogle Scholar
  28. 28.
    M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng: Science, 2003, vol. 300, pp. 1275–77.CrossRefGoogle Scholar
  29. 29.
    X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He, and Y.T. Zhu: Appl. Phys. Lett., 2003, vol. 83, pp. 5062–64.CrossRefGoogle Scholar
  30. 30.
    X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu: Appl. Phys. Lett., 2003, vol. 83, pp. 632–34.CrossRefGoogle Scholar
  31. 31.
    X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov: Appl. Phys. Lett., 2004, vol. 84, pp. 592–95.CrossRefGoogle Scholar
  32. 32.
    X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, and J.D. Embury: Acta Mater., 2004, vol. 52, pp. 995–1002.CrossRefGoogle Scholar
  33. 33.
    X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.CrossRefGoogle Scholar
  34. 34.
    S.I. Rao and P.M. Hazzledine: Phil. Mag. A, 2000, vol. 80, pp. 2011–40.CrossRefGoogle Scholar
  35. 35.
    A. Misra, J.P. Hirth, and H. Kung: Phil. Mag. A, 2002, vol. 82, pp. 2935–51.CrossRefGoogle Scholar
  36. 36.
    R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: Phil. Mag. A, 2002, vol. 82, pp. 643–64.CrossRefGoogle Scholar
  37. 37.
    J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, p. 1995.CrossRefGoogle Scholar
  38. 38.
    M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Prentice-Hall, Inc., Elmsford, NJ, 1999.Google Scholar
  39. 39.
    L. Remy: Metall. Trans. A, 1981, vol. 12A, pp. 387–408.Google Scholar
  40. 40.
    W.J. Babyak and F.N. Rhines: Trans. TMS, 1960, vol. 21.Google Scholar
  41. 41.
    C.S. Pande, B.B. Rath, and M.A. Imam: Mater. Sci. Eng., 2004, vol. A367, pp. 171–75.Google Scholar
  42. 42.
    J.-Q. Su, M. Demura, and T. Hirano: Acta Mater., 2003, vol. 51, pp. 2505–15.CrossRefGoogle Scholar
  43. 43.
    N.Y.C. Yang, T.J. Headley, J.J. Kelly, and J.M. Hruby: Scripta Mater., 2004, vol. 51, pp. 761–66.CrossRefGoogle Scholar
  44. 44.
    F. Ebrahimi, Z. Ahmed, and H. Li: Appl. Phys. Lett., 2004, vol. 85, pp. 3749–51.CrossRefGoogle Scholar
  45. 45.
    Modern Electroplating, M. Schlesinger and M. Paunovic, eds., John Wiley & Sons, New York, NY, 2000.Google Scholar
  46. 46.
    B. Wu: Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004.Google Scholar
  47. 47.
    Z. Zhang, F. Zhou, and E.J. Lavernia: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1349–55.Google Scholar
  48. 48.
    A. Brenner: Electrodeposition of Alloys—Principles and Practice, Academic Press, New York, NY.Google Scholar
  49. 49.
    C. Fan and D.L. Piron: Electrochimica Acta, 1996, vol. 41, pp. 1713–19.CrossRefGoogle Scholar
  50. 50.
    F. DallaTorre, H. Van Swygenhoven, and M. Victoria: Acta Mater., 2002, vol. 50, pp. 3957–70.CrossRefGoogle Scholar
  51. 51.
    S. Van Petegem, F. Dalla Torre, D. Segers, and H. Van Swygenhoven: Scripta Mater., 2003, vol. 48, pp. 17–22.CrossRefGoogle Scholar
  52. 52.
    A.M. El-Sherik and U. Erb: J. Mater. Sci., 1995, vol. 30, pp. 5743–49.CrossRefGoogle Scholar
  53. 53.
    K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Acta Mater., 2003, vol. 51, pp. 387–405.CrossRefGoogle Scholar
  54. 54.
    J.K. Dennis and J.J. Fuggle: Electroplat. Met. Fin., 1967, vol. 30, p. 370.Google Scholar
  55. 55.
    A.M. El-Sherik: Ph.D. Thesis, Queen’s University, Kingston, Canada, 1993.Google Scholar
  56. 56.
    R. Wei and H.C. Cook: Plat. Surf. Fin., 1962, vol. 109, p. 295.Google Scholar
  57. 57.
    A.A. Karimpoor, U. Erb, K.T. Aust, and G. Palumbo: Scripta Mater., 2003, vol. 49, pp. 651–56.CrossRefGoogle Scholar
  58. 58.
    Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.CrossRefGoogle Scholar
  59. 59.
    D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E.J. Lavernia: Scripta Mater., 2003, vol. 49, pp. 297–302.CrossRefGoogle Scholar
  60. 60.
    G. He, J. Eckert, W. Loser, and L. Schultz: Nature Mater., 2003, vol. 2, pp. 33–37.CrossRefGoogle Scholar
  61. 61.
    U. Erb: Nanostr. Mater., 1995, vol. 6, pp. 533–38.CrossRefGoogle Scholar
  62. 62.
    F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews: Nanostr. Mater., 1999, vol. 11, pp. 343–50.CrossRefGoogle Scholar
  63. 63.
    G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong: Scripta Metall., 1986, vol. 20, pp. 93–97.CrossRefGoogle Scholar
  64. 64.
    R.G. Hoagland and R.J. Kurtz: Phil. Mag. A, 2002, vol. 82, pp. 1073–92.CrossRefGoogle Scholar
  65. 65.
    H. Kokawa, T. Watanabe, and S. Karashima: Phil. Mag., 1981, vol. A44, pp. 1239–54.Google Scholar
  66. 66.
    T. Watanabe: Metall. Trans. A, 1983, vol. 14A, pp. 531–45.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • B. Y. C. Wu
    • 1
  • C. A. Schuh
    • 1
  • P. J. Ferreira
    • 2
  1. 1.the Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge
  2. 2.the Materials Science and Engineering ProgramUniversity of Texas at AustinAustin

Personalised recommendations