Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1911–1920 | Cite as

An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles

  • Mark Easton
  • David StJohn
Article

Abstract

To be able to determine the grain size obtained from the addition of a grain refining master alloy, the relationship between grain size (d), solute content (defined by the growth restriction factor Q), and the potency and number density of nucleant particles needs to be understood. A study was undertaken on aluminium alloys where additions of TiB2 and Ti were made to eight wrought aluminum alloys covering a range of alloying elements and compositions. It was found from analysis of the data that \(d = \frac{a}{{\sqrt[3]{{pct TiB_2 }}}} + \frac{b}{Q}\). From consideration of the experimental data and from further analysis of previously published data, it is shown that the coefficients a and b relate to characteristics of the nucleant particles added by a grain refiner. The term a is related to the maximum density of active TiB2 nucleant particles within the melt, while b is related to their potency. By using the analysis methodology presented in this article, the performance characteristics of different master alloys were defined and the effects of Zr and Si on the poisoning of grain refinement were illustrated.

Keywords

Material Transaction Master Alloy Nucleant Particle Growth Restriction Factor Titanium Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.G. McCartney: Int. Mater. Rev., 1989, vol. 34, pp. 247–60.Google Scholar
  2. 2.
    M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.Google Scholar
  3. 3.
    M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1625–33.Google Scholar
  4. 4.
    M.A. Easton and D.H. StJohn: Light Metals 2001, TMS, Warrendale, PA, 2001, pp. 927–34.Google Scholar
  5. 5.
    G. Chai, L. Bäckerud, and L. Arnberg: Mater. Sci. Technol., 1995, vol. 11, pp. 1099–1103.Google Scholar
  6. 6.
    M. Johnsson: Z. Metallkd., 1994, vol. 85, pp. 781–85.Google Scholar
  7. 7.
    M.A. Easton and D.H. StJohn: Acta Mater., 2001, vol. 49 (10), pp. 1867–78.CrossRefGoogle Scholar
  8. 8.
    P. Desnain, Y. Fautrelle, J.-L. Meyer, J.-P. Riquet, and F. Durand: Acta Mater. Metall., 1990, vol. 38 (8), pp. 1513–23.CrossRefGoogle Scholar
  9. 9.
    I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229–37.CrossRefGoogle Scholar
  10. 10.
    M.A. Easton and D.H. StJohn: Mater. Sci. Technol., 2000, vol. 16 (9), pp. 993–1000.Google Scholar
  11. 11.
    T.E. Quested and A.L. Greer: Light Metals 2003, TMS, Warrendale, PA, 2003, pp. 945–52.Google Scholar
  12. 12.
    M. Johnsson, L. Bäckerud, and G. Sigworth: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 481–91.Google Scholar
  13. 13.
    A.E. Karantzalis and A.R. Kennedy: Mater. Sci. Technol., 1998, vol. 14 (11), pp. 1092–96.Google Scholar
  14. 14.
    M. Guzowski, G. Sigworth, and D. Sentner: Metall. Trans. A, 1987, vol. 18A, pp. 603–19.Google Scholar
  15. 15.
    A. Cibula: J. Inst. Met., 1951–52, vol. 80, pp. 1–16.Google Scholar
  16. 16.
    G. Sigworth: Scripta Mater., 1996, vol. 34 (6), pp. 919–22.CrossRefGoogle Scholar
  17. 17.
    P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, and A.H. Green: Mater. Sci. Technol., 1998, vol. 14 (5), pp. 394–404.Google Scholar
  18. 18.
    P. Mohanty and J. Gruzleski: Acta Metall. Mater., 1995, vol. 43, pp. 2001–12.CrossRefGoogle Scholar
  19. 19.
    Y.C. Lee, A.K. Dahle, D.H. StJohn, and J.E.C. Hutt: Mater. Sci. Eng. A, 1999, vol. 259, pp. 43–51.CrossRefGoogle Scholar
  20. 20.
    A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.CrossRefGoogle Scholar
  21. 21.
    L. Bäckerud, E. Krol, and J. Tamminen: in Solidification Characteristics of Aluminium Alloys, L. Bäckerud, ed., Skanaluminium, Universitetsforlaget AS, Oslo, Norway, 1986, vol. 1, pp. 63–74.Google Scholar
  22. 22.
    L. Arnberg, L. Bäckerud, and H. Klang: Met. Technol., 1982, vol. 9, pp. 7–13.Google Scholar
  23. 23.
    P. Tøndel: Grain Refinement of Hypoeutectic Al-Si Alloys, The University of Trondheim, Trondheim, Norway, 1994.Google Scholar
  24. 24.
    A. Abdel-Hamid: Z. Metallkd., 1989, vol. 80, pp. 566–69.Google Scholar
  25. 25.
    W. Kurz and D. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998.Google Scholar
  26. 26.
    I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 895–99.CrossRefGoogle Scholar
  27. 27.
    M. Kearns, S. Thistlewaite, and P. Cooper: Light Metals 1996, TMS, Warrendale, PA, 1996, pp. 713–20.Google Scholar
  28. 28.
    W. Schneider and P. Cooper: 8th Aus. Aluminium Casthouse Technology Conf., TMS, Warrendale, PA, 2003, pp. 182–87.Google Scholar
  29. 29.
    M. Abdel-Reihim, N. Hess, W. Reif, and M. Birch: J. Mater. Sci., 1987, vol. 22, pp. 213–18.CrossRefGoogle Scholar
  30. 30.
    J. Spittle J. Keeble, and M. Al Meshhedani: Light Metals 1997, TMS, Warrendale, PA, 1997, pp. 795–800.Google Scholar
  31. 31.
    J. Hutt, M. Easton, L. Hogan, and D. StJohn: Solidification Processing 1997, University of Sheffield, Sheffield, 1997, pp. 268–72.Google Scholar
  32. 32.
    B.J. McKay and P. Schumacher: in Solidification of Aluminum Alloys, TMS, Warrendale, PA, 2004, pp. 157–66.Google Scholar
  33. 33.
    A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd, and A.L. Greer: Mater. Sci. Technol., 1999, vol. 15, pp. 1115–23.Google Scholar
  34. 34.
    M. Johnsson: Z. Metallkd., 1994, vol. 85, pp. 786–89.Google Scholar
  35. 35.
    M. Kearns and P. Cooper: Mater. Sci. Technol., 1997, vol. 13, pp. 650–54.Google Scholar
  36. 36.
    J. Spittle and S. Sadli: Cast Met., 1995, vol. 7, pp. 247–53.Google Scholar
  37. 37.
    Y.C. Lee, A.K. Dahle, and D.H. StJohn: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2895–2906.Google Scholar
  38. 38.
    M. Johnsson and L. Bäckerud: Z. Metallkd., 1996, vol. 87 (3), pp. 216–20.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Mark Easton
    • 1
  • David StJohn
    • 2
  1. 1.the School of Physics and Materials EngineeringMonash UniversityMelbourneAustralia
  2. 2.the Division of Materials EngineeringUniversity of QueenslandBrisbaneAustralia

Personalised recommendations