Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1793–1805 | Cite as

Correlation of rolling condition, microstructure, and low-temperature toughness of X70 pipeline steels

  • Byoungchul Hwang
  • Young Min Kim
  • Sunghak Lee
  • Nack J. Kim
  • Jang Yong Yoo
Article

Abstract

Correlation of rolling conditions, microstructure, and low-temperature toughness of high-toughness X70 pipeline steels was investigated in this study. Twelve kinds of steel specimens were fabricated by vacuum-induction melting and hot rolling, and their microstructures were varied by rolling conditions. Charpy V-notch (CVN) impact test and drop-weight tear test (DWTT) were conducted on the rolled steel specimens in order to analyze low-temperature fracture properties. Charpy impact test results indicated that the energy transition temperature (ETT) was below −100 °C when the finish cooling temperature range was 350 °C to 500 °C, showing excellent low-temperature toughness. The ETT increased because of the formation of bainitic ferrite and martensite at low finish cooling temperatures and because of the increase in effective grain size due to the formation of coarse ferrites at high finish cooling temperatures. Most of the specimens also showed excellent DWTT properties as the percent shear area well exceeded 85 pct, irrespective of finish rolling temperatures or finish cooling temperatures, although a large amount of inverse fracture occurred at some finish cooling temperatures.

Keywords

Acicular Ferrite Pipeline Steel Bainitic Ferrite Polygonal Ferrite Retain Austenite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Denys: Pipeline Technology, Elsevier, Brugge, Belgium, 2000, vols. I–II.Google Scholar
  2. 2.
    J.E. Hood: Int. J. Pres. Ves. Piping, 1974, vol. 2, pp. 165–78.CrossRefGoogle Scholar
  3. 3.
    J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: ISOPE Symp. High-Performance Materials in Offshore Industry, Honolulu, HI, 2003, pp. 10–18.Google Scholar
  4. 4.
    M. Matsuda and H. Miura: Met. Mater. Int., 2003, vol. 9, pp. 537–42.Google Scholar
  5. 5.
    K.T. Corbett, R.R. Bowen, and C.W. Petersen: ISOPE Symp. High-Performance Materials in Offshore Industry, Honolulu, HI, 2003, pp. 105–12.Google Scholar
  6. 6.
    H.N. Han, C.-S. Oh, D.W. Suh, C.G. Lee, T.-H. Lee, and S.-J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 221–29.Google Scholar
  7. 7.
    G. Mannucci, and D. Harris: “Fracture Properties of API X100 Gas Pipeline Steels”, Final Report, European Commission, Brussels, Belgium, 2002, pp. 1–128.Google Scholar
  8. 8.
    G.M. McClure, A.R. Duffy, and R.J. Eiber: J. Eng. Industry, 1965, vol. 4, pp. 265–78.Google Scholar
  9. 9.
    G.M. Wilkowski, W.A. Maxey, and R.J. Eiber: ASM Symp. on What Does Charpy Test Really Tell Us?, ASM, Metals Park, OH, 1978, pp. 201–25.Google Scholar
  10. 10.
    G.M. Wilkowski, W.A. Maxey, and R.J. Eiber: Can. Metall. Q., 1980, vol. 19, pp. 59–77.Google Scholar
  11. 11.
    API Recommended Practice 5L3, American Petroleum Institute, Washington, DC, 1996.Google Scholar
  12. 12.
    D.J. Horsley: Eng. Fract. Mech., 2003, vol. 70, pp. 547–52.CrossRefGoogle Scholar
  13. 13.
    R.J. Eiber, T.A. Bubenik, and W.A. Maxey: Fracture Control Technology For Natural Gas Pipelines, Pipeline Research Council International Inc., Arlington, VA, 1993.Google Scholar
  14. 14.
    ASTM Standard E23-02, ASTM, West Conshohocken, PA, 2002.Google Scholar
  15. 15.
    T.-H. Lee, C.-S. Oh, C.G. Lee, S.-J. Kim, and S. Takaki: Met. Mater. Int., 2004, vol. 10, pp. 231–36.Google Scholar
  16. 16.
    A.K. De, J.G. Speer, and D.K. Matlock: Adv. Mater. Process, 2003, vol. 161, pp. 27–30.Google Scholar
  17. 17.
    Atlas for Bainitic Microstructures, Iron Steel Inst. Jpn., Tokyo, 1992, vol. 1.Google Scholar
  18. 18.
    T. Hayashi, F. Kawabata, and K. Amano: Proc. Materials Solution ’97 on Accelerated Cooling/Direct Quenching of Steels, ASM INTERNATIONAL, Materials Park, OH, 1997, pp. 93–99.Google Scholar
  19. 19.
    G. Krauss and S.W. Thompson: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.Google Scholar
  20. 20.
    B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22A, pp. 139–49.Google Scholar
  21. 21.
    S. Kim, S. Lee, Y.-R. Im, H.-C. Lee, S.-J. Kim, and J.H. Hong: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2027–37.CrossRefGoogle Scholar
  22. 22.
    I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-strength Low-Alloy Steels, Butterworth & Co. Ltd., London, 1988.Google Scholar
  23. 23.
    G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, London, 1988.Google Scholar
  24. 24.
    J.M. Hyzak and I.M. Bernstein: Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.Google Scholar
  25. 25.
    N.J. Kim: J. Met., 1983, vol. 35, pp. 21–27.Google Scholar
  26. 26.
    N.J. Kim, A.J. Yang, and G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 471–74.Google Scholar
  27. 27.
    Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 1571–77.Google Scholar
  28. 28.
    C.-S. Oh, H.N. Han, C.G. Lee, T.-H. Lee, and S.-J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 399–406.CrossRefGoogle Scholar
  29. 29.
    B. Hwang, S. Lee, Y.M. Kim, N.J. Kim, and S.S. Ahn: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 725–39.Google Scholar
  30. 30.
    N. Iwasaki, T. Yamaguchi, and T. Taira: Mech. Work Steel Process, 1975, vol. 13, pp. 294–314.Google Scholar
  31. 31.
    H. Kashimura, M. Ogasawara, and H. Mimura: Met. Progr., 1976, Nov., pp. 58–62.Google Scholar
  32. 32.
    K. Seifert: Mater. Testing, 1984, vol. 26, pp. 277–80.Google Scholar
  33. 33.
    B. Hwang, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, and C.S. Woo: Mater. Sci. Eng. A, 2004, vol. A368, pp. 18–27.Google Scholar
  34. 34.
    F. Rivalin, A. Pineau, M.D. Fant, and J. Besson: Eng. Fract. Mech., 2001, vol. 68, pp. 329–45.CrossRefGoogle Scholar
  35. 35.
    P. Salvini, A. Fonze, and G. Mannucci: Eng. Fract. Mech., 2003, vol. 70, pp. 553–66.CrossRefGoogle Scholar
  36. 36.
    M. Toyoda and R. Denys: Proc. Int. Pipe Dreamer’s Conf., Scientific Surveys, Ltd., Yokohama, Japan, 2002.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Byoungchul Hwang
    • 1
  • Young Min Kim
    • 1
  • Sunghak Lee
    • 1
    • 2
  • Nack J. Kim
    • 1
    • 2
  • Jang Yong Yoo
    • 3
  1. 1.the Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.Materials Science and EngineeringPohang University of Science and TechnologyKorea
  3. 3.the Plate Research GroupTechnical Research Laboratories, POSCOPohangKorea

Personalised recommendations