Metallurgical and Materials Transactions A

, Volume 36, Issue 12, pp 3281–3289 | Cite as

In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite

  • S. S. Babu
  • E. D. Specht
  • S. A. David
  • E. Karapetrova
  • P. Zschack
  • M. Peet
  • H. K. D. H. Bhadeshia


The isothermal transformation of high-carbon austenite-to-bainitic ferrite has been investigated with the in-situ technique of time-resolved X-ray diffraction using synchrotron radiation. The measurements indicate that prior to transformation, the austenite divided into regions with significantly different lattice parameters. It is possible that this is due to the development of carbon-rich and carbon-poor regions in the austenite, as a precursor to transformations including the bainite reaction. The lattice parameter became uniform as transformation progressed and the fraction of carbon-poor austenite decreased. The ferrite itself exhibited a large range of lattice parameters during the early stages of transformation, due to the trapping of carbon.


Ferrite Austenite Material Transaction Bainite Bainitic Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., IOM Communications Ltd., London, 2001.Google Scholar
  2. 2.
    J.W. Christian: Theory of Transformations in Metals and Alloys, 3rd ed., Part 11, Pergamon Press, London, 2002.Google Scholar
  3. 3.
    M. Hillert: Scripta Mater., 2002, vol. 47, pp. 175–80.CrossRefGoogle Scholar
  4. 4.
    H.I. Aaronson, W.T. Reynolds, G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.Google Scholar
  5. 5.
    E.P. Klier and T. Lyman: Trans. AIME, 1944, vol. 158, pp. 394–422.Google Scholar
  6. 6.
    R.I. Eintin: Proc. Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience Publishers, New York, NY, 1962.Google Scholar
  7. 7.
    Z. Bojarski and T. Bold: Acta Metall., 1974, vol. 22, pp. 1223–34.CrossRefGoogle Scholar
  8. 8.
    C. Lim and M. Wutting: Acta Metall., 1974, vol. 22, pp. 1215–22.CrossRefGoogle Scholar
  9. 9.
    J.H. Zhang, S.C. Chen, and T.Y. Hsu: Acta Metall., 1989, vol. 37, pp. 241–46.CrossRefGoogle Scholar
  10. 10.
    X.L. Wu, H. Jia, X. Zhang, and M. Kang: J. Mater. Sci. Technol., 1995, vol. 11, pp. 353–57.Google Scholar
  11. 11.
    X.L. Wu, X.Y. Zhang, M.K. Kang, X.K. Meng, Y.Q. Yang, and D. Han: Mater. Trans., JIM, 1994, vol. 35, pp. 782–86.Google Scholar
  12. 12.
    M. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia: Scripta Mater., 2004, vol. 50, pp. 1277–81.CrossRefGoogle Scholar
  13. 13.
    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Häusermann: High Pressure Res., 1996, vol. 14, pp. 235–38.Google Scholar
  14. 14.
    A.P. Hammersley: ESRF Internal Report No. ESRF97HA02A, ESRF, Grenoble Cedex, France, 1997.Google Scholar
  15. 15.
    S.S. Babu, J.W. Elmer, J.M. Vitek, and S.A. David: Acta Mater., 2002, vol. 50, pp. 4763–81.CrossRefGoogle Scholar
  16. 16.
    B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Publishing Inc., Reading, MA, 1978.Google Scholar
  17. 17.
    H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.Google Scholar
  18. 18.
    D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–73.Google Scholar
  19. 19.
    S.S. Babu: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1992.Google Scholar
  20. 20.
    M. Acet, B. Gehrmann, E.F. Wassermann, H. Bach, and W. Pepperhoff: J. Magn. Magn. Mater, 2001, vol. 232, pp. 221–30.CrossRefGoogle Scholar
  21. 21.
    O.M. Barabash, S.S. Babu, S.A. David, J.M. Vitek, and R.I. Barabash: J. Appl. Phys., 2003, vol. 94, pp. 738–42.CrossRefGoogle Scholar
  22. 22.
    A. Borgenstam, T. Engstrom, L. Hoglund, P.F. Shi, and B. Sundman: CALPHAD, 2000, vol. 21, pp. 269–80.Google Scholar
  23. 23.
    J.W. Christian: The Theory of Transformations in Metals and Alloys—Part 1, Pergamon Press, Elsevier Science, New York, NY, 2002, p. 461.Google Scholar
  24. 24.
    J.O. Andersson, T. Helander, L. Hoglund, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  25. 25.
    Thermotech Fe-Data Thermodynamic Database, Thermotech Ltd./Sente Software Ltd., Surrey Technology Center, United Kingdom.Google Scholar
  26. 26.
    J.W. Cahn: Acta Metall., 1961, vol. 9, pp. 795–98.CrossRefGoogle Scholar
  27. 27.
    L. Kaufman, E.V. Clougherty, and R.J. Weiss: Acta Metall., 1963, vol. 11, p. 323.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • S. S. Babu
    • 2
  • E. D. Specht
    • 1
  • S. A. David
    • 1
  • E. Karapetrova
    • 3
  • P. Zschack
    • 3
  • M. Peet
    • 4
  • H. K. D. H. Bhadeshia
    • 4
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak Ridge
  2. 2.the Edison Welding InstituteColumbus
  3. 3.the Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbana
  4. 4.the Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUnited Kingdom

Personalised recommendations