Advertisement

Metallurgical and Materials Transactions A

, Volume 35, Issue 2, pp 679–693 | Cite as

Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material

  • S. L. Semiatin
  • D. S. Weaver
  • R. C. Kramb
  • P. N. Fagin
  • M. G. Glavicic
  • R. L. Goetz
  • N. D. Frey
  • M. M. Antony
Article

Abstract

The deformation and dynamic recrystallization behavior of Waspaloy-ingot material with coarse, columnar grains was established using isothermal uniaxial and double-cone compression tests. Testing was conducted along different test directions relative to the columnar-grain microstructure at supersolvus temperatures (1066 °C and 1177 °C) and strain rates (0.005 and 0.1 s−1), which bracket typical ingot-breakdown conditions for the material. The flow behavior of axial samples (i.e., those compressed parallel to the columnar-grain direction) showed an initial strain-hardening transient followed by steady-state flow. In contrast, the stress-strain curves of samples upset transverse to the columnar grains exhibited a peak stress at low strains, whose magnitude was greater than the steady-state flow stress of the axial samples, followed by flow softening. The two distinct flow behaviors were explained on the basis of the solidification texture associated with the starting ingot structure, differences in the kinetics of dynamic recrystallization revealed in the double-cone tests, and the evolution of deformation and recrystallization textures during hot working. Dynamic recrystallization kinetics were measurably faster for the transverse samples as well as specimens oriented at ∼45 deg to the forging direction, an effect partially rationalized based on the initial texture and its effect on the input rate of deformation work driving recrystallization. Despite these differences, the overall strains required for dynamic recrystallization were comparable to those measured previously for fine-grain (wrought) Waspaloy. However, the Avrami exponents (∼2 to 3) were somewhat higher than those for wrought material (∼1 to 2), an effect attributable to the particle-stimulated nucleation in the ingot material.

Keywords

Material Transaction Flow Stress Dynamic Recrystallization Fiber Texture Taylor Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.J. McQueen and J.J. Jonas: Treatise on Materials Science and Technology, Plastic Deformation of Materials, Academic Press, New York, NY, 1975, vol. 6, pp. 393–493.Google Scholar
  2. 2.
    C.M. Sellars: Mater. Sci. Technol., 1990, vol. 6, pp. 1072–81.Google Scholar
  3. 3.
    T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas: Acta Metall., 1988, vol. 7, pp. 1781–90.Google Scholar
  4. 4.
    F.J. Humphries and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, United Kingdom, 1996.Google Scholar
  5. 5.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. A238, pp. 219–74.Google Scholar
  6. 6.
    S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.CrossRefGoogle Scholar
  7. 7.
    M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.CrossRefGoogle Scholar
  8. 8.
    M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.CrossRefGoogle Scholar
  9. 9.
    J.W. Cahn: Acta Metall., 1956, vol. 4, pp. 449–59.CrossRefGoogle Scholar
  10. 10.
    Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM INTERNATIONAL, Materials Park, OH, 2003.Google Scholar
  11. 11.
    M.G. Glavicic, P.A. Kobryn, F. Spadafora, and S.L. Semiatin: Mater. Sci. Eng. A, 2003, vol. A346, pp. 8–18.Google Scholar
  12. 12.
    C. Devadas, I.V. Samarasekera, and E.B. Hawbolt: Metall. Trans. A, 1991, vol. 22A, pp. 335–49.Google Scholar
  13. 13.
    M.C. Mataya: JOM, 1999, vol. 51(1), pp. 18–26.Google Scholar
  14. 14.
    G. Shen, S.L. Semiatin, and R. Shivpuri: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1795–803.Google Scholar
  15. 15.
    A.A. Guimaraes and J.J. Jonas: Metall. Trans. A, 1981, vol. 12A, pp. 1655–66.Google Scholar
  16. 16.
    D.P. Stewart: in Superalloys 1988, S. Reichman, D.N. Duhl, G. Mauer, S. Antolovich, and C. Lund, eds., TMS, Warrendale, PA, 1988, pp. 545–51.Google Scholar
  17. 17.
    B. Antolovich and M. Evans: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olsen, and J.J. Schirra, eds., TMS, Warrendale, PA, 2000, pp. 39–47.Google Scholar
  18. 18.
    O.A. Kaibyshev, V.A. Valitov, and G.A. Salishchev: Phys. Met. Metallogr., 1993, vol. 75, pp. 409–414.Google Scholar
  19. 19.
    D.R. Muzyka: Met. Eng. Q., 1971, vol. 11 (4), pp. 12–20.Google Scholar
  20. 20.
    Los Alamos Polycrystal Plasticity Code, Report No. LA-CC-88-6, Los Alamos National Laboratory, Los Alamos, NM, 1988.Google Scholar
  21. 21.
    S.L. Semiatin, P.N. Fagin, M.G. Glavicic, and D. Raabe: Scripta Mater., 2003, in press.Google Scholar
  22. 22.
    M. Jackson, R.J. Dashwood, L. Christodoulou, and H.M. Flower: Mater. Sci. Technol., 2000, vol. 16, pp. 1437–444.CrossRefGoogle Scholar
  23. 23.
    DEFORM™ 3.2 User Manual, Scientific Forming Technologies Corporation, Columbus, OH, 1994.Google Scholar
  24. 24.
    W.T. Wu: Scientific Forming Technologies Corporation, Columbus, OH, unpublished research, 2003.Google Scholar
  25. 25.
    G.Y. Chin and W.L. Mammel: Trans. TMS-AIME, 1967, vol. 239, pp. 1400–05.Google Scholar
  26. 26.
    S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963–75.Google Scholar
  27. 27.
    T.H. Courtney: Mechanical Behavior of Materials, McGraw-Hill, New York, NY, 1990.Google Scholar
  28. 28.
    V. Seetharaman and S.L. Semiatin: Metall. Mater. Trans. A, 1997, vol. 28, pp. 2309–21.CrossRefGoogle Scholar
  29. 29.
    L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665–72.CrossRefGoogle Scholar
  30. 30.
    D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69–80.CrossRefGoogle Scholar
  31. 31.
    W. Roberts, H. Boden, and B. Ahlblom: Met. Sci., 1979, Mar.–Apr., pp. 195–205.Google Scholar
  32. 32.
    P.G. Shewmon: Transformations in Metals, McGraw-Hill, New York, NY, 1969.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • S. L. Semiatin
    • 1
  • D. S. Weaver
    • 2
  • R. C. Kramb
    • 3
  • P. N. Fagin
    • 4
  • M. G. Glavicic
    • 4
  • R. L. Goetz
    • 4
  • N. D. Frey
    • 5
  • M. M. Antony
    • 6
  1. 1.the Air Force Research LaboratoryMaterials and Manufacturing Directorate, Afrl/MllmWright-Patterson Air Force Base
  2. 2.Chemical Engineering Departmentthe University of DaytonDayton
  3. 3.Mechanical Engineering Departmentthe University of DaytonDayton
  4. 4.UES, Inc.Dayton
  5. 5.E.T. Concepts, Inc.London
  6. 6.Allvac, An Allegheny Technologies CompanyMonroe

Personalised recommendations