Advertisement

Metallurgical and Materials Transactions A

, Volume 35, Issue 12, pp 3693–3700 | Cite as

Role of carbon and alloying elements in the formation of bainitic ferrite

  • M. Hillert
  • L. Höglund
  • J. Ågren
Article

Abstract

One approach to the prediction of the carbon content of austenite, remaining after the precipitation of bainitic ferrite, is based on the assumption that bainitic ferrite during growth inherits the carbon content of the parent austenite. An alternative approach is based on the assumption that bainitic ferrite grows with a low carbon content and there is no major difference between Widmanstätten ferrite and bainitic ferrite. The two approaches are now compared using information from alloyed steels with considerable amounts of Si, where the formation of cementite is retarded. The former approach does not account for the effect of Mn and fails severely at low alloy contents. The latter approach seems more promising but is not without difficulties. In particular, in order to explain the effects of Cr and Mo, it seems necessary to introduce a kinetic effect, presumably caused by solute drag.

Keywords

Ferrite Austenite Material Transaction Cementite Bainite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hultgren: J. Iron Steel Inst., 1926, vol. 114, pp. 421–22.Google Scholar
  2. 2.
    J.M. Robertson: J. Iron Steel Inst., 1929, vol. 119, pp. 391–424.Google Scholar
  3. 3.
    F. Wever and H. Lange: Mitt. Kaiser-Wilhelm Inst. Eisenforschung, 1932, vol. 14, pp. 71–83.Google Scholar
  4. 4.
    C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–83.Google Scholar
  5. 5.
    A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915–89.Google Scholar
  6. 6.
    T. Ko and S.A. Cottrell: J. Iron Steel Inst., 1952, vol. 172, pp. 307–13.Google Scholar
  7. 7.
    J.M. Oblak and R.F. Hehemann: Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, pp. 15–30.Google Scholar
  8. 8.
    M. Hillert: Jernkont. Ann., 1957, vol. 141, pp. 757–89.Google Scholar
  9. 9.
    M. Hillert: “The Growth of Ferrite, Bainite and Martensite,” Internal Report, Swedish Institute of Metal Research, Stockholm, 1960.Google Scholar
  10. 10.
    R. le Houillier, G. Bégin, and A. Dubé: Trans. Metall., 1971, vol. 2, pp. 2645–53.CrossRefGoogle Scholar
  11. 11. (a)
    H.K.D.H. Bhadeshia and D.V. Edmond: Acta Metall., 1980, vol. 28, pp. 1265–73; (b) Reanalysis of data, Metall. Mater. Trans. A, 1998, vol. 20A, pp. 330–32.CrossRefGoogle Scholar
  12. 12.
    H.K.D.H. Bhadeshia: Acta Metall., 1981, vol. 29, pp. 1117–30.CrossRefGoogle Scholar
  13. 13.
    W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.Google Scholar
  14. 14.
    H.K.D.H. Bhadeshia: Bainite in Steels, The Institute of Materials, London, 2001.Google Scholar
  15. 15.
    N. Usui, K. Sugimoto, E. Nishida, M Kobayashi, and S Hashimoto: CAMP-ISIJ, 1990, vol. 3, pp. 2013–14.Google Scholar
  16. 16.
    C.S. Roberts: Trans. AIME, 1953, pp. 203–04.Google Scholar
  17. 17.
    B.D. Cullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing, New York, NY, 1978.Google Scholar
  18. 18.
    Z. Nishiyama: Martensite Transformation, Maruzen, Tokyo, 1979.Google Scholar
  19. 19.
    R.C. Ruhl and M. Cohen: Trans. AIME, 1969, vol. 245, pp. 241–51.Google Scholar
  20. 20.
    D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.Google Scholar
  21. 21.
    M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, and N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29, pp. 1011–16.CrossRefGoogle Scholar
  22. 22.
    K. Sugimoto, A. Kanda, R. Kikuchi, S. Hashimoto, T. Kashima, and S. Ikeda: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 910–15.Google Scholar
  23. 23.
    K. Tsuzaki, A. Kodai, and T. Maki: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2009–16.Google Scholar
  24. 24.
    J.-O. Andersson, T. Helander, L. Höglund, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  25. 25.
    G.R. Speich and M. Cohen: Trans. AIME, 1960, vol. 218, pp. 1050–59.Google Scholar
  26. 26.
    P. Gustafson: Scand. J. Metall., 1985, vol. 14, pp. 259–67.Google Scholar
  27. 27.
    G.I. Rees and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8, pp. 985–93.Google Scholar
  28. 28.
    K. Sugimoto, J. Sagaguchi, T. Tida, and T. Kashima: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 920–26.Google Scholar
  29. 29.
    K. Sugimoto, K. Nakomo, S.-M. Song, and T. Kashima: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 450–55.Google Scholar
  30. 30.
    E.P. Klier and T. Lyman: Trans. AIME, 1944, vol. 158, pp. 394–422.Google Scholar
  31. 31.
    T. Lyman and A.R. Troiano: Trans. AIME, 1945, vol. 162, pp. 196–220.Google Scholar
  32. 32.
    T. Lyman and A.R. Troiano: Trans. ASM, 1946, vol. 37, pp. 402–44.Google Scholar
  33. 33.
    H.K.D.H. Bhadeshia: Int. Conf. Solid -> Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 1041–44.Google Scholar
  34. 34.
    W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1433–63.Google Scholar
  35. 35.
    M. Takahashi and H.K.D.H. Bhadeshia: Mater. Trans., JIM, 1991, vol. 32, pp. 689–96.Google Scholar
  36. 36.
    D. Quidort, O. Bouaziz, and Y. Bréchet: in Austenite Formation and Decomposition, E.B. Damm and J. Merwin, eds., TMS, Warrendale, PA, 2003, pp. 15–25.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • M. Hillert
    • 1
  • L. Höglund
    • 1
  • J. Ågren
    • 1
  1. 1.the Department of Materials Science and EngineeringKTHStockholmSweden

Personalised recommendations