Advertisement

Metallurgical and Materials Transactions A

, Volume 35, Issue 9, pp 2981–2991 | Cite as

Experimental and modeling studies of the thermal conditions and magnesium, iron, and copper content on the morphology of the aluminum silicon eutectic in hypoeutectic aluminum silicon alloys

  • G. Heiberg
  • Ch -A. Gandin
  • H. Goerner
  • L. Arnberg
Article

Abstract

Hypoeutectic aluminum silicon alloys without and with additions of magnesium, copper, iron, and strontium have been cast in a mold, giving directional solidification from a chill. Detailed temperature measurements have been carried out. Solidification modeling based on front tracking of the microstructure growth fronts allowed identification of the time and temperature at which the dendrite tips and the first eutectic pass the thermocouples. The undercooling, growth rate, and thermal gradients at the dendritic and eutectic growth fronts were derived. The effect of varying thermal parameters and alloy compositions on the microstructure was investigated. Compared to the binary alloy, a coarser eutectic was observed in the alloys with magnesium, iron, and/or copper. The coarsening is explained as a result of the transition from a eutectic forming at one specific temperature, to a eutectic forming over a temperature range. The former is likely to grow as a plane front, whereas the latter is likely to form an interdendritic eutectic mushy zone.

Keywords

Material Transaction Mushy Zone Growth Front Eutectic Growth Eutectic Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.K. Dahle, S.D. McDonald, and K. Nogita: Advances in Aluminum Casting Technology II, ASM INTERNATIONAL, Materials Park, OH, 2002, pp. 1–10.Google Scholar
  2. 2.
    R. Grugel and W. Kurz: Metall. Trans. A, 1987, vol. 18A, pp. 1137–42.Google Scholar
  3. 3.
    S. Khan and R. Elliott: Acta Metall. Mater., 1993, vol. 41, pp. 2433–39.CrossRefGoogle Scholar
  4. 4.
    M.A.A. Najafabadi, A. Ourdjiin, and R. Elliott: Cast Met., 1995, vol. 8 (1), pp. 35–42.Google Scholar
  5. 5.
    M.A.A. Najafabadi, A. Ourdjiin, and R. Elliott: Cast Met., 1995, vol. 8 (1), pp. 43–50.Google Scholar
  6. 6.
    L.M. Hogan and H. Song: Metall. Trans. A, 1987, vol. 18A, pp. 707–13.Google Scholar
  7. 7.
    P. Magnin and W. Kurz: Acta Metall., 1987, vol. 5, pp. 1119–28.Google Scholar
  8. 8.
    J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.CrossRefGoogle Scholar
  9. 9.
    J.E. Gruzleski: AFS Trans., 1992, vol 100, pp. 673–83.Google Scholar
  10. 10.
    A. Joenoes and E. Gruzleski: Cast Met., 1991, vol. 4 (2), pp. 62–71.Google Scholar
  11. 11.
    L. Heusler and W. Schneider: J. Light Met., 2002, vol. 2 (1), pp. 17–26.CrossRefGoogle Scholar
  12. 12.
    M.A. Moustafa, F.H. Samuel, H.W. Doty, and S. Valtierra: Int. J. Cast Met. Res., 2002, vol. 14, pp. 235–53.Google Scholar
  13. 13.
    C.H. Caceres, C.J. Davidson, and J.R. Griffiths: Mater. Sci. Eng., 1995, vol. A197, pp. 171–79.Google Scholar
  14. 14.
    G. Heiberg, K. Nogita, A.K. Dahle, and L. Arnberg: Acta Mater., 2002, vol. 50, pp. 2537–46.CrossRefGoogle Scholar
  15. 15.
    G. Heiberg, K. Nogita, M. Raanes, A.L. Dons, A.K. Dahle, and L. Arnberg: AFS Trans., 2002, vol. 110.Google Scholar
  16. 16.
    M.D. Hanna, Shu-zu Lu, and A. Hellawell: Metall. Trans. A, 1984, vol. 15A, pp. 459–69.Google Scholar
  17. 17.
    Q.S. Hamed, R. Elliot, and P.S. Cooper: in Light Metals, E.R. Cutshall, ed., TMS, Warrendale, PA, 1992, pp. 1391–97.Google Scholar
  18. 18.
    G. Laslaz: Proc. 4th Int. Conf. on Molten Aluminium Processing, Orlando, FL, 1995, AFS, Des Plaines, IL, 1995, pp. 459–80.Google Scholar
  19. 19.
    A.K. Dahle, K. Nogita, J.W. Zindel, S.W. McDonald, and L.M. Hogan: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 949–60.Google Scholar
  20. 20.
    K. Nogita, S.D. McDonald, J.W. Zindel, and A.K. Dahle: Mater. Trans., 2001, vol. 42, pp. 1981–86.CrossRefGoogle Scholar
  21. 21.
    A.K. Dahle, J.A. Taylor, and D.A. Graham: Aluminium Trans., 2000, vol. 3 (1), pp. 17–30.Google Scholar
  22. 22.
    A. Savitzky and M.J.E. Gloay: Anal. Chem., 1964, vol. 36, pp. 1627–39.CrossRefGoogle Scholar
  23. 23.
    L. Pedersen: Ph.D. Thesis, NTNU, Trondheim, 1999.Google Scholar
  24. 24.
    Ch.-A. Gandin: Iron Steel Inst. Jpn., 2000, vol. 40, pp. 971–79.Google Scholar
  25. 25.
    Ch.-A. Gandin: Acta Mater., 2000, vol. 48, pp. 2483–501.CrossRefGoogle Scholar
  26. 26.
    Thermo-Calc Version N, Foundation for Computational Thermodynamics, Stockholm.Google Scholar
  27. 27.
    N. Saunders: Al-DATA, a Thermodynamic Database for Calculation of Phase Equilibria in Multi-Component Al-Based Alloys V. 2.0, Thermotech Ltd., The Surrey Research Park, United Kingdom, 1998.Google Scholar
  28. 28.
    S.C. Flood and J.D. Hunt: J. Cryst. Growth, 1987, vol. 82, pp. 543–51.CrossRefGoogle Scholar
  29. 29.
    L. Backerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, vol. 2, Foundry Alloys, AFS/Skanaluminium, Oslo, 1990.Google Scholar
  30. 30.
    Ch.-A. Gandin, G. Guillemot, B. Appolaire, and N.T. Niane: Mater. Sci. Eng., 2003, vol. A342, pp. 44–50.Google Scholar
  31. 31.
    W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–40.CrossRefGoogle Scholar
  32. 32.
    S.C. Flood and J.D. Hunt: Met. Sci., 1981, vol. 15, pp. 287–94.CrossRefGoogle Scholar
  33. 33.
    W. Kurz and D.J. Fischer: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1992.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • G. Heiberg
    • 1
  • Ch -A. Gandin
    • 2
  • H. Goerner
    • 3
  • L. Arnberg
    • 3
  1. 1.Det Norske VeritasHøvikNorway
  2. 2.the Ecole des MinesNancy, CedexFrance
  3. 3.the Department of Materials TechnologyNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations