Metallurgical and Materials Transactions A

, Volume 35, Issue 9, pp 2821–2828 | Cite as

Effect of dissolved tungsten on the deformation of 70Ni-30Fe alloys

  • K. E. Knipling
  • G. Zeman
  • J. S. Marte
  • S. M. Kelly
  • S. L. Kampe
Article

Abstract

A series of Ni-Fe alloys containing various levels of tungsten in solid solution have been prepared as a means to assess the influence of solid solution strengthening on the mechanical behavior of monolithic 70Ni-30Fe. In particular, 70Ni-30Fe alloys plus equilibrium concentrations of tungsten in solid solution nominally correspond to the compositions associated with the matrix-only portion of certain tungsten heavy alloys, that is, alloys comprised of a high volume fraction of nominally pure tungsten particles embedded within a minority Ni-Fe-W based matrix. The study shows that the working solubility of tungsten within the 70Ni-30Fe base composition increases slightly with temperature, from approximately 21 wt pct at room temperature to approximately 23 wt pct at 1400 °C. Increasing the level of tungsten in solid solution leads to increases in room-temperature yield strength, tensile strength, and ductility. In contrast, the deformation characteristics of the alloys, as quantified by the power-law work-hardening exponent, n, and the strain-rate-sensitivity exponent, m, show little variation with tungsten solute concentration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.H. Rabin, A. Bose, and R.M. German: Int. J. Powder Metall., 1989, vol. 25 (1), pp. 21–27.Google Scholar
  2. 2.
    B.H. Rabin and R.M. German: Metall. Trans. A, 1988, vol. 19A, pp. 1523–32.Google Scholar
  3. 3.
    S.G. Caldwell: Tungsten and Tungsten Alloys—1992, A. Bose and R.J. Dowding, eds., MPIF, Princeton, NJ, 1992, pp. 89–96.Google Scholar
  4. 4.
    Y.H. Chiou, Y.S. Zu. and S.T. Lin: J. Mater. Sci., 1996, vol. 31, pp. 4039–46.CrossRefGoogle Scholar
  5. 5.
    J.R. Spencer and J.A. Mullendore: Tungsten and Tungsten Alloys—1992, A. Bose and R.J. Dowding, eds., MPIF, Princeton, NJ, 1992, pp. 111–18.Google Scholar
  6. 6.
    L.B. Ekbom, U. Lindegran, and J.-E. Andersson: Int. J. Refractory Hard Met., 1988, vol. 7 (4), pp. 210–14.Google Scholar
  7. 7.
    L. Ekbom: Scand. J. Metall., 1988, vol. 17, pp. 84–89.Google Scholar
  8. 8.
    R.S. Coates and K.T. Ramesh: Mater. Sci. Eng., 1991, vol. A145, pp. 159–66.Google Scholar
  9. 9.
    A. Bose: in Tungsten and Refractory Metals—1994, Proc. 2nd Int. Conf. on Tungsten and Refractory Metals, McLean, VA, Oct. 17–19, 1994, MPIF/APMI, Princeton, NJ, 1994, pp. 21–33.Google Scholar
  10. 10.
    R. Gero, L. Borukhin, and I. Pikus: Mater. Sci. Eng., 2001, vol. A302, pp. 162–67.Google Scholar
  11. 11.
    R.L. Woodward, I.G. McDonald, and A. Gunner: J. Mater. Sci. Lett., 1986, vol. 5, pp. 413–14.CrossRefGoogle Scholar
  12. 12.
    G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, Boston, MA, 1986, p. 288.Google Scholar
  13. 13.
    ASTM E92-82, “Standard Test Method for Vickers Hardness of Metallic Materials,” Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1982, vol. 03.01, pp. 208–16.Google Scholar
  14. 14.
    R.V. Minakova, N.A. Strochak, P.A. Verkhovodov, L.G. Bazhenova, and V.L. Poltoratskaya: Sov. Powder Met. Metal Ceram., 1980, vol. 19, pp. 842–46.Google Scholar
  15. 15.
    M.A. Meyers and J.R.C. Guimaraes: Metalurgia-ABM, 1978, vol. 34, p. 707.Google Scholar
  16. 16.
    M.A. Meyers and K.K. Chawla: Mechanical Metallurgy Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984, p. 398.Google Scholar
  17. 17.
    R.J. Dowding and K.J. Tauer: Scripta Metall. Mater., 1991, vol. 25 (1), pp. 121–25.CrossRefGoogle Scholar
  18. 18.
    M. Yodogawa: Sintering Theory and Practice, Elsevier, New York, NY, 1982, vol. 14, p. 519.Google Scholar
  19. 19.
    M. Zhou, A. Needleman, and R.J. Clifton: J. Mech. Phys. Solids, vol. 42, 1994, pp. 423–58.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • K. E. Knipling
    • 1
  • G. Zeman
    • 2
  • J. S. Marte
    • 3
  • S. M. Kelly
    • 4
  • S. L. Kampe
    • 4
  1. 1.the Materials Science and Engineering DepartmentNorthwestern UniversityEvanston
  2. 2.Advanced Technology. Aerojet Ordnance TennesseeJonesborough
  3. 3.the Ceramics and Metallurgy Technologies GroupGE Global Research CenterSchenectady
  4. 4.the Materials Science and Engineering Department, Virginia TechBlacksburg

Personalised recommendations