Advertisement

Metallurgical and Materials Transactions A

, Volume 35, Issue 9, pp 2547–2555 | Cite as

Dislocation mechanics-based constitutive equations

  • Frank J. Zerilli
Article

Abstract

A review of constitutive models based on the mechanics of dislocation motion is presented, with focus on the models of Zerilli and Armstrong and the critical influence of Armstrong on their development. The models were intended to be as simple as possible while still reproducing the behavior of real metals. The key feature of these models is their basis in the thermal activation theory propounded by Eyring in the 1930’s. The motion of dislocations is governed by thermal activation over potential barriers produced by obstacles, which may be the crystal lattice itself or other dislocations or defects. Typically, in bcc metals, the dislocation-lattice interaction is predominant, while in fcc metals, the dislocation-dislocation interaction is the most significant. When the dislocation-lattice interaction is predominant, the yield stress is temperature and strain rate sensitive, with essentially athermal strain hardening. When the dislocation-dislocation interaction is predominant, the yield stress is athermal, with a large temperature and rate sensitive strain hardening. In both cases, a significant part of the athermal stress is accounted for by grain size effects, and, in some materials, by the effects of deformation twinning. In addition, some simple strain hardening models are described, starting from a differential equation describing creation and annihilation of mobile dislocations. Finally, an application of thermal activation theory to polymeric materials is described.

Keywords

Material Transaction Flow Stress Mobile Dislocation Deformation Twinning Flow Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.R. Johnson and W.H. Cook: Proc. 7th Int. Symp. on Ballistics, The Hague, The Netherlands, 1983, p. 541.Google Scholar
  2. 2.
    G.I. Taylor: Proc. R. Soc. London, 1934, vol. 145A, p. 362.Google Scholar
  3. 3.
    E. Orowan: Z. Phys., 1934, vol. 89, pp. 605, 614, and 634.CrossRefGoogle Scholar
  4. 4.
    M. Polanyi: Z. Phys., 1934, vol. 89, p. 660.CrossRefGoogle Scholar
  5. 5.
    H. Eyring: J. Chem. Phys., 1936, vol. 3, p. 107; J. Chem. Phys., 1936, vol. 4, p. 283.CrossRefGoogle Scholar
  6. 6.
    P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, p. 81.CrossRefGoogle Scholar
  7. 7.
    F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, p. 1816.CrossRefGoogle Scholar
  8. 8.
    F.J. Zerilli and R.W. Armstrong: Acta Metall. Mater., 1992, vol. 40, pp. 1803–08.CrossRefGoogle Scholar
  9. 9.
    U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and Kinetics of Slip, Progress in Materials Science Vol. 19, Pergamon, Oxford, United Kingdom, 1975.Google Scholar
  10. 10.
    C.S. Hartley: 2nd Int. Conf. on the Strength of Metals and Alloys, Vol. II, ASM, Metals Park, OH, 1970, p. 429ff.Google Scholar
  11. 11.
    P. Feltham: Br. J. Appl. Phys., 1969, vol. 2, p. 377.Google Scholar
  12. 12.
    R.W. Armstrong: (Ind.) J. Scientific Industrial Res., 1973, vol. 32, pp. 591–598; R.W. Armstrong and J.D. Campbell: The Microstructure and Design of Alloys, Institute of Metals and the Iron and Steel Institute, Cambridge, United Kingdom, 1973, vol. 1, p. 529ff.Google Scholar
  13. 13.
    R.W. Armstrong and J.D. Campbell: The Microstructure and Design of Alloys, Proc. 3rd Int. Conf. on the Strength of Metals and Alloys Vol. 1 Institute of Metals and the Iron and Steel Institute, Cambridge, United Kingdom, 1973, p. 529; H. Conrad: J. Iron Steel Inst., 1961, vol. 198, p. 364.Google Scholar
  14. 14.
    F.J. Zerilli and R.W. Armstrong: in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, Y.D.S. Rajapakse and J.R. Vinson, eds., ASME, New York, NY, 1995, AD-Vol. 48, pp. 121–26.Google Scholar
  15. 15.
    G.R. Johnson and W.H. Cook: Eng. Fract. Mech., 1985, vol. 21, p. 31.CrossRefGoogle Scholar
  16. 16.
    R.W. Armstrong and F.J. Zerilli: J. Phys., Coll., 1988, vol. 49 (9), p. 529.Google Scholar
  17. 17.
    R.W. Armstrong and P.J. Worthington: Metallurgical Effects at High Strain Rates, Plenum Press, New York, NY, 1974, p. 401.Google Scholar
  18. 18.
    W.C. Leslie: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Karnes, eds., Plenum, New York, NY, 1974, p. 571.Google Scholar
  19. 19.
    F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1990, vol. 68, p. 1580.CrossRefGoogle Scholar
  20. 20.
    J.H. Bechtold and P.G. Shewmon: Trans. ASM, 1954, vol. 46, pp. 397–408.Google Scholar
  21. 21.
    J.H. Bechtold: Trans. AIME, 1956, vol. 206, pp. 142–46.Google Scholar
  22. 22.
    V. Ramachandran, R.W. Armstrong, and F.J. Zerilli: Tungsten and Tungsten Alloys—Recent Advances, TMS, Warrendale, PA, 1991, pp. 111–19.Google Scholar
  23. 23.
    F.J. Zerilli and R.W. Armstrong: Shock Compression of Condensed Matter—1991, Elsevier, Amsterdam, 1992, p. 257.Google Scholar
  24. 24.
    F.J. Zerilli and R.W. Armstrong: in Shock Waves in Condensed Matter 1987, Elsevier, Amsterdam, 1988, p. 273ff.Google Scholar
  25. 25.
    F.J. Zerilli and R.W. Armstrong: in Grain Size and Mechanical Properties—Fundamentals and Applications, M.A. Otooni, R.W. Armstrong, N.J. Grant, and K. Ishizaki, eds., Materials Research Society, Pittsburgh, PA, 1995, p. 149ff.Google Scholar
  26. 26.
    V. Ramachandran, A.T. Santhanam, and R.E. Reed-Hill: Ind. J. Technol., 1973, vol. 11, pp. 485–92.Google Scholar
  27. 27.
    W.H. Holt, W. Mock, F.J. Zerilli, and J.B. Clark: Mech. Mater., 1994, vol. 17, 195–201.CrossRefGoogle Scholar
  28. 28.
    F.J. Zerilli and R.W. Armstrong: Shock Compression of Condensed Matter 1989, Elsevier, Amsterdam, 1990, p. 357ff.Google Scholar
  29. 29.
    G.I. Taylor: Proc. R. Soc., 1934, vol. A145, p. 362ff.Google Scholar
  30. 30.
    G.I. Taylor and H. Quinney: Proc. R. Soc., 1934, vol. A143, p. 307ff.Google Scholar
  31. 31.
    Y. Bergstrom: Mater. Sci. Eng., 1970, vol. 5, p. 193ff.Google Scholar
  32. 32.
    J. Klepaczko: Mater. Sci. Eng., 1975, vol. 18, pp. 121–35.CrossRefGoogle Scholar
  33. 33.
    Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.CrossRefGoogle Scholar
  34. 34.
    D. McClean: Mechanical Properties of Metals, John Wiley & Sons, New York, NY, 1962.Google Scholar
  35. 35.
    S.R. Chen, G.T. Gray III, and S.R. Bingert: in Tantalum, E. Chen, A. Crowson, E. Lavernia, W. Ebihara, and P. Kumar, eds., TMS, Warrendale, PA, 1996, pp. 173–84.Google Scholar
  36. 36.
    F.J. Zerilli: Naval Surface Warfare Center Indian Head Division, Indian Head, MD, unpublished work, 1997.Google Scholar
  37. 37.
    B. Escaig: Ann. Phys., 1978, vol. 3, pp. 207–20.Google Scholar
  38. 38.
    W. Kauzmann: Trans. Am. Int. Min. Metall. Eng., 1941, vol. 143, p. 57ff.Google Scholar
  39. 39.
    J.J. Gilman: J. Appl. Phys., 1973, vol. 44, p. 675ff.Google Scholar
  40. 40.
    O.A. Hasan and M.C. Boyce: Polymer, 1993, vol. 34, p. 5085ff.Google Scholar
  41. 41.
    A.S. Argon: Phil. Mag., 1973, vol. 28, p. 839ff.Google Scholar
  42. 42.
    F.J. Zerilli and R.W. Armstrong: in Shock Compression of Condensed Matter—1999, AIP Conf. Proc. 505, M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, eds., American Institute of Physics, Melville, NY, 2000, pp. 531–34.Google Scholar
  43. 43.
    C. Bauwens-Crowet: J. Mater. Sci., 1973, vol. 8, p. 968ff; D. Fotheringham and B.W. Cherry: J. Mater. Sci., 1976, vol. 11, pp. 1368 and 1370.Google Scholar
  44. 44.
    F.J. Zerilli and R.W. Armstrong: J. Phys. IV France, 2000, vol. 10, p. 3ff.Google Scholar
  45. 45.
    F.J. Zerilli and R.W. Armstrong: in Shock Compression of Condensed Matter—2001, AIP Conf. Proc. 620, M.D. Furnish, N.N. Thadani, and Y. Horie, eds., American Institute of Physics, Melville, NY, 2002, pp. 657–60.Google Scholar
  46. 46.
    S.M. Walley and J.E. Field: DYMAT J., 1994, vol. 1, pp. 211–27 (Fig. 20).Google Scholar
  47. 47.
    S.M. Walley, J.E. Field, P.H. Pope, and N.A. Safford: J. Phys. III France, 1991, vol. 1, p. 1889 (Fig. 161).CrossRefGoogle Scholar
  48. 48.
    G.T. Gray, III, C.M. Cady, and W.R. Blumenthal: Constitutive and Damage Modeling of Inelastic Deformation and Phase Transformation, Proc. Plasticity ’99, 7th Int. Symp. on Plasticity and Its Current Applications, Akhtar S. Khan, ed., Neat Press, Fulton, MD, p. 955.Google Scholar
  49. 49.
    J.A. Sauer and K.D. Pae: Coll. Polymer Sci., 1974, vol. 252, p. 680ff.Google Scholar
  50. 50.
    N.G. McCrum: J. Polymer Sci., 1959, vol. 34, p. 355ff.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • Frank J. Zerilli
    • 1
  1. 1.the Research and Technology DepartmentNaval Surface Warfare Center Indian Head DivisionIndian Head

Personalised recommendations