Metallurgical and Materials Transactions A

, Volume 35, Issue 1, pp 247–256 | Cite as

The effect of temperature and extrusion speed on the consolidation of zirconium-based metallic glass powder using equal-channel angular extrusion

  • I. Karaman
  • J. Robertson
  • J.- -T. Im
  • S. N. Mathaudhu
  • K. T. Hartwig
  • Z. P. Luo


In this study, gas-atomized amorphous Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 (Vitreloy 106a) containing 1280 ppmw oxygen was consolidated by equal-channel angular extrusion (ECAE). The powder was vacuum encapsulated in copper cans and subjected to one extrusion pass in the temperature region above the glass transition temperature (T g) and below the crystallization temperature (T x). The effects of extrusion temperature and the extrusion rate on microstructure, thermal stability, hardness, and compressive strength are investigated. Compression fracture surfaces were examined to determine the deformation mechanisms. The consolidates in which the time-temperature-transformation (TTT) boundary was not crossed during processing exhibit differential scanning calorimetry (DSC) patterns similar to the initial powder, with a slight decrease in T x. Compressive strengths of about 1.6 GPa are recorded in the consolidates processed at 30 °C and 40 °C below T x, which is close to what is observed in cast counterparts. The fracture surfaces exhibit vein patterns covering up to 90 pct of the surface area in some samples, which are characteristic of glassy material fracture. The slight decrease in T x after consolidation is attributed to thermal-history-dependent short-range order and formation of nanocrystalline islands. The present results show that ECAE is successful in consolidation of metallic glass powder. This processing avenue opens a new opportunity to fabricate bulk metallic glasses (BMGs) with dimensions that may be impossible to achieve by casting methods.


Differential Scanning Calorimetery Material Transaction Metallic Glass Bulk Metallic Glass Initial Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.L. Johnson: Materials Research Society Symposia Proc., Materials Research Society, Philadelphia, PA, 1999, vol. 554, p. 311.Google Scholar
  2. 2.
    W.L. Johnson: JOM, 2002, vol. 54 (3), p. 40.Google Scholar
  3. 3.
    H.A. Bruck, A.J. Rosakis, and W.L. Johnson: J. Mater. Res., 1996, vol. 11, p. 503.Google Scholar
  4. 4.
    D.J. Sordelet, E. Rozhkova, P. Huang, P.B. Wheelock, M.F. Besser, M.J. Kramer, M. Calvo-Dahlborg, and U. Dahlborg: J. Mater. Res., 2002, vol. 17, p. 186.Google Scholar
  5. 5.
    H. Kato, Y. Kawamura, and A. Inoue: Mater. Trans. JIM, 1996, vol. 37, p. 70.Google Scholar
  6. 6.
    Y. Kawamura, H. Kato, A. Inoue, and T. Masumoto: Int. J. Powder Metall., 1997, vol. 33 (2), p. 50.Google Scholar
  7. 7.
    J. Robertson, J.-T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson: J. Non-Crystalline Solids, 2003, vol. 317, pp. 144–51.CrossRefGoogle Scholar
  8. 8.
    Humberto Zapata: Master’s Thesis, Texas A&M University, College Station, TX, 1998.Google Scholar
  9. 9.
    K.T. Hartwig, H. Zapata, A. Parasiris, and S. Mathaudhu: Proc. Powder Materials: Current Research and Industrial Practices Symp., F.D.S. Marquis, N. Thadhani, and E.V. Barrera, eds., TMS, Warrendale, PA, 2001, pp. 211–21.Google Scholar
  10. 10.
    A. Parasiris, K.T. Hartwig, and M.N. Srinivasan: Scripta Mater., 2000, vol. 42, p. 875.CrossRefGoogle Scholar
  11. 11.
    K.T. Hartwig, G. Chase, and J. Belan: Applied Superconductivity, IEEE Trans., 2003, vol. 13, No. 2, p. 3548.CrossRefGoogle Scholar
  12. 12.
    Liquid Metal Technologies Vitreloy 106 Data Sheet, Lake Forest, CA.Google Scholar
  13. 13.
    H. Choi-Yim, R.D. Conner, F. Szuecs, W.L. Johnson, Acta Mater., 2002, vol. 50, p. 2737.CrossRefGoogle Scholar
  14. 14.
    A. Inoue: Mater. Sci. Foundations 6, Trans Tech Publications, Aedermannsdorf, Switzerland, 1999.Google Scholar
  15. 15.
    A. Inoue: Intermetallics, 2000, vol. 8, pp. 455–68.CrossRefGoogle Scholar
  16. 16.
    Y. Kawamura and A. Inoue: Appl. Phys. Lett., 2000, vol. 77, p. 1114.CrossRefGoogle Scholar
  17. 17.
    J.M. Pelletier, B. Van de Moortele, and I.R. Lu: Science of Metastable and Nanocrystalline Alloys: Structure, Properties and Modeling, Proc. 22nd, Risø Int. Symp. on Materials Science, A.R. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pedersen, and N.H. Pryds, eds., Risø National Laboratory, Roskilde, Denmark, 2001.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • I. Karaman
    • 1
  • J. Robertson
    • 1
  • J.- -T. Im
    • 1
  • S. N. Mathaudhu
    • 1
  • K. T. Hartwig
    • 1
  • Z. P. Luo
    • 2
  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege Station
  2. 2.Microscopy and Imaging CenterTexas A&M UniversityCollege Station

Personalised recommendations