Metallurgical and Materials Transactions A

, Volume 35, Issue 1, pp 153–162 | Cite as

Quench embrittlement of hardened 5160 steel as a function of austenitizing temperature

  • A. Reguly
  • T. R. Strohaecker
  • G. Krauss
  • D. K. Matlock
Article

Abstract

Charpy V-notch (CVN) specimens from experimental heats of 5160 steel containing 0.001 and 0.034 mass pct phosphorus were austenitized at temperatures between 830 °C and 1100 °C, quenched to martensite, and tempered at temperatures between 100 °C and 500 °C. Scanning electron microscopy (SEM) was used to characterize the fracture surfaces of tested CVN specimens and carbide formation on prior austenite grain boundaries. Quench embrittlement, the susceptibility to intergranular fracture in as-quenched and low-temperature tempered high-carbon steels due to cementite formation as affected by phosphorus segregation on austenite grain boundaries, developed readily in specimens of the high phosphorus steel austenitized at all temperatures. The low phosphorus steel developed quench embrittlement only after austenitizing at 1100 °C. Intergranular fractures correlated with low room-temperature CVN impact toughness. The results are discussed with respect to the dissolution of carbides during austenitizing and the effect of phosphorus on grain boundary, carbide formation, and stability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.K. Banerji, C.J. McMahon, Jr., and H.C. Feng: Metall. Trans. A, 1978, vol. 9A, pp. 237–47.Google Scholar
  2. 2.
    N. Banyopadhyay and C.J. McMahon, Jr.: Metall. Trans. A, 1983, vol. 14A, pp. 1313–32.Google Scholar
  3. 3.
    G. Krauss and C.J. McMahon, Jr.: in Martensite, G.B. Olson and W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 295–321.Google Scholar
  4. 4.
    C.L. Briant: in Impurities in Engineering Materials, C.L. Briant, ed., Marcel Dekker, Inc., New York, NY, 1999, pp. 193–224.Google Scholar
  5. 5.
    G. Krauss: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 349–59.Google Scholar
  6. 6.
    G. Krauss: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 861–77.Google Scholar
  7. 7.
    R.S. Hyde, G. Krauss, and D.K. Matlock: 40th MWSP Conf. Proc., ISS, Warrendale, PA, 1998, pp. 921–28.Google Scholar
  8. 8.
    H.J. Grabke: in Impurities in Engineering Materials, C.L. Briant, ed., Marcel Dekker, Inc., New York, NY, 1999, pp. 143–92.Google Scholar
  9. 9.
    J.P. Materkowski and G. Krauss: Metall. Trans. A, 1979, vol. 10A, pp. 1643–51.Google Scholar
  10. 10.
    G. Krauss: Metall. Trans. A, 1978, vol. 9A, pp. 1527–35.Google Scholar
  11. 11.
    R.S. Hyde, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1229–40.Google Scholar
  12. 12.
    V. Raghavan: Phase Diagrams of Temary Iron Alloys; Part 3 Ternary Systems Containing Iron and Phosphorus, 1st ed., Indian Institute of Metals, Calcutta, 1988, pp. 33–44.Google Scholar
  13. 13.
    T. Ando and G. Krauss: Metall. Trans. A, 1981, vol. 12A, pp. 1283–90.Google Scholar
  14. 14.
    F.A. Darnwish, L.C. Pereira, C. Gatts, and M.L. Graca: Mater. Sci. Eng., 1991, vol. A132, pp. L5-L9.Google Scholar
  15. 15.
    A. Reguly: Ph.D. Thesis, Universidade Federal do Rio Grande do Sol, Porto Alegre, Brazil, 1999.Google Scholar
  16. 16.
    T. Maki, K. Tsuzaki, and I. Tamura: Trans. Iron Steel Inst. Jpn., 1986, vol. 20, pp. 207–14.Google Scholar
  17. 17.
    J.D. Wong, D.K. Matlock, and G. Krauss: 43rd MWSP Conf. Proc., ISS, Warrendale, PA, 2001, pp. 21–36.Google Scholar
  18. 18.
    G. Thomas: Metall. Trans. A, 1978, vol. 9A, pp. 439–50.Google Scholar
  19. 19.
    B.A. James, D.K. Matlock, and G. Krauss: 38th MWSP Conf. Proc., ISS, Warrendale, PA, 1997, vol. XXXIV, pp. 579–90.Google Scholar
  20. 20.
    E.L. Brown and G. Krauss: Metall. Trans. A, 1986, vol. 17A, pp. 31–36.Google Scholar
  21. 21.
    R.A. Grange: Trans. ASM, 1966, vol. 59, pp. 26–48.Google Scholar
  22. 22.
    D.L. Yaney: Master’s Thesis, Colorado School of Mines, Golden, CO, 1987.Google Scholar
  23. 23.
    H.I. Aaronson: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience Publishers, New York, NY, 1962, pp. 387–542.Google Scholar
  24. 24.
    T. Ando and G. Krauss: Acta Metall., 1981, vol. 29, pp. 351–63.CrossRefGoogle Scholar
  25. 25.
    N. Bandyopadhyay, J. Kameda, and C.J. McMahon, Jr.: Metall. Trans. A, 1983, vol. 14A, pp. 881–88.Google Scholar
  26. 26.
    Y. Weng and C.J. McMahon, Jr.: Mat. Sci. and Tech., 1987, vol. 3, pp. 207–216.Google Scholar
  27. 27.
    R.L. Bodner, J.R. Michael, S.S. Hansen, and R.I. Jaffee: 30th MWSP Conf. Proc., ISS, Warrendale, PA, 1988, pp. 173–94.Google Scholar
  28. 28.
    R.L. Bodner, T. Ohhashi, and R.I. Jaffee: Metall. Trans. A, 1989, vol. 20A, pp. 1445–60.Google Scholar
  29. 29.
    T. Majka: Master’s Thesis, Colorado School of Mines, Golden, CO, 2001.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • A. Reguly
    • 1
  • T. R. Strohaecker
    • 1
  • G. Krauss
    • 2
  • D. K. Matlock
    • 2
  1. 1.the Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.the Advanced Steel Processing and Products Research CenterColorado School of MinesGolden

Personalised recommendations