Metallurgical and Materials Transactions A

, Volume 35, Issue 10, pp 3149–3154 | Cite as

Single-crystal elastic constants of Fe-15Ni-15Cr alloy

  • A. Teklu
  • H. Ledbetter
  • S. Kim
  • L. A. Boatner
  • M. McGuire
  • V. Keppens
Article

Abstract

Resonant ultrasound spectroscopy (RUS) and pulse-echo (PE) superposition techniques have been used to determine the three independent elastic-stiffness constants C11, C12, and C44 as a function of temperature for single crystals of 70Fe-15Ni-15Cr alloy. The values of the elastic moduli determined using RUS and PE are in very good agreement within the range of uncertainties. This particular ternary composition of Fe, Ni, and Cr undergoes an fcc-bcc structural phase transformation near 190 K resulting in a low-temperature ferromagnetic phase. The Debye characteristic temperature was determined to be 447 K from PE and 451 K from RUS measurements. The Zener elastic anisotropy A=2C44/(C11−C12) is nearly constant: A=3.53±0.16 in Fe-Ni-Cr alloys with similar compositions. For these alloys, only small variations are observed in the Grüneisen parameter, γ≈2.08, and in the Poisson ratio, v [hkl]=0.293±0.013.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ledbetter: Phys. B, 1985, vol. 128, pp. 1–4.Google Scholar
  2. 2.
    J. Hirth: Met. Sci. J., 1976, vol. 10, p. 222.Google Scholar
  3. 3.
    C. Cousins: J. Phys. C, 1969, vol. 2, p. 765.CrossRefGoogle Scholar
  4. 4.
    P. Debye: Ann. Phys. (Leipz), 1912, vol. 39, p. 789.Google Scholar
  5. 5.
    J. Thomas: Phys. Rev. B, 1968, vol. 175, p. 955.CrossRefGoogle Scholar
  6. 6.
    L. Landau and E. Lifshitz: Statistical Physics, Pergamon Press Ltd., New York, 1980, vol. 5.Google Scholar
  7. 7.
    A. Migliori and J. Sarrao: Resonant Ultrasound Spectroscopy, John Wiley & Sons, Inc., New York, NY, 1997.Google Scholar
  8. 8.
    W. Hume-Rothery: The Structures of Alloys of Iron, Pergamon, Oxford, United Kingdom, 1969, p. 102.Google Scholar
  9. 9.
    F.L. Versnyder and B.J. Piearcey: SAE J., 1966, vol. 74, p. 36.Google Scholar
  10. 10.
    F.L. Versnyder and M.E. Shank: Mater. Sci. Eng., 1970, vol. 6, p. 213.CrossRefGoogle Scholar
  11. 11.
    M. Gell and D.N. Duhl: Advanced High Temperature Alloys, ASM, Materials Park, OH, 1986, p. 41.Google Scholar
  12. 12.
    M. Gell, D.N. Duhl, and A. Giamei: Proc. 4th Int. Symp. on the Development of Single Crystal Superalloy Turbine Blades, ASM, Metals Park, OH, 1980, p. 205.Google Scholar
  13. 13.
    J.M. Vitek, S.A. David, and L.A. Boatner: Sci. Technol. Welding Joining, 1997, vol. 2(3), p. 109.Google Scholar
  14. 14.
    C. Teodosiu: Elastic Models of Ciystal Defects, Springer, Berlin, 1982.Google Scholar
  15. 15.
    B. Lüthi and W. Rehwald: Structural Phase Transition I, Springer, Berlin, 1981, p. 131.Google Scholar
  16. 16.
    M. Musgrave: Crystal Acoustics, Holden-Day, San Francisco, CA, 1970.Google Scholar
  17. 17.
    J. Kübler: Phys. Lett., 1981, vol. 81A, p. 81.Google Scholar
  18. 18.
    L.A. Boatner: Metall. Trans. A, 1989, vol. 20A, pp. 1125–38.Google Scholar
  19. 19.
    H. Ledbetter, N. Frederick, and M. Austin: J. Appl. Phys., 1980, vol. 51, p. 305.CrossRefGoogle Scholar
  20. 20.
    C. Zener: Elasticity and Anelasticity of Metals, University of Chicago, Chicago, IL, 1948, ch. 4.Google Scholar
  21. 21.
    F. Kroner: Z. Phys., 1958, vol. 151, p. 504.CrossRefGoogle Scholar
  22. 22.
    H. Ledbetter: Dynamic Elastic-Modulus Measurements, ASTM, Philadelphia, PA, 1990, p. 135.Google Scholar
  23. 23.
    H. Ledbetter: J. Appl. Phys., 1981, vol. 52, p. 1587.CrossRefGoogle Scholar
  24. 24.
    H. Ledbetter: Phys. Status Solidi (a), 1984, vol. 85, p. 89.CrossRefGoogle Scholar
  25. 25.
    V. Moruzzi, J. Janak, and A. Williams: Calculated Electronic Properties of Metals, Pergamon, New York, NY, 1978, p. 76.Google Scholar
  26. 26.
    J. Goodenough: Magnetism and the Chemical Bond, Wiley, New York, NY, 1963, ch. III, sect. III.Google Scholar
  27. 27.
    M. Druyvesteyn and J. Meyering: Physica, 1941, vol. 8, p. 1059.CrossRefGoogle Scholar
  28. 28.
    M. Blackman: Handbuch der Physik, vol. VII, Part I, Kristallphysik, Springer, Berlin, 1955, p. 325, Eq. 9.11.Google Scholar
  29. 29.
    J. Janak and A. Williams: Phys. Rev. B, 1976, vol. 14, p. 4199.CrossRefGoogle Scholar
  30. 30.
    C. Zener: Acta Cryst., 1949, vol. 2, p. 163.CrossRefGoogle Scholar
  31. 31.
    D. Gerlich and S. Hart: J. Appl. Phys., 1984, vol. 880, p. 880.CrossRefGoogle Scholar
  32. 32.
    K. Gschneidner: Solid State Phys., 1964, vol. 16, p. 412.Google Scholar
  33. 33.
    H. Ledbetter: Phys. Status Solidi (b), 1994, vol. 181, p. 81.Google Scholar
  34. 34.
    W. Köster and H. Franz: Metall. Rev., 1961, vol. 6, pp. 1–55.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • A. Teklu
    • 1
  • H. Ledbetter
    • 2
  • S. Kim
    • 3
  • L. A. Boatner
    • 4
  • M. McGuire
    • 5
  • V. Keppens
    • 6
  1. 1.College of CharlestonCharleston
  2. 2.Los Alamos National LaboratoryLos Alamos
  3. 3.the National Institute of Standards and TechnologyBoulder
  4. 4.the Oak Ridge National LaboratoryOak Ridge
  5. 5.Cornell UniversityIthaca
  6. 6.University of TennesseeKnoxville

Personalised recommendations