Metallurgical and Materials Transactions A

, Volume 35, Issue 10, pp 3103–3112 | Cite as

Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures

  • Dong-Geun Lee
  • You Hwan Lee
  • Sunghak Lee
  • Chong Soo Lee
  • Sun-Moo Hur


Effects of microstructural morphology on dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy plates were investigated in this study. Dynamic torsional and ballistic impact tests were conducted on equiaxed and bimodal microstructures, which were processed by different heat treatments, and then the test data were analyzed in relation to microstructures and tensile properties. According to the dynamic torsional test data, maximum shear stress and fracture shear strain of the bimodal microstructure were higher than those of the equiaxed microstructure, and the possibility of the adiabatic shear band formation was more likely in the equiaxed microstructure than in the bimodal microstructure. In the ballistically impacted region of the equiaxed microstructure, a number of adiabatic shear bands and cracks were observed to be formed along plastic flow lines, and delamination occurred because of cracking along the flow lines or shear bands. In the case of the bimodal microstructure, shear bands were found in limited areas near the penetrated surface without occurring delamination, and their number was smaller than that of the equiaxed microstructure. Thus, ballistic performance of the bimodal microstructure was better than that of the equiaxed microstructure, which was consistent with the dynamic torsional test results.


Material Transaction Shear Band Adiabatic Shear Band Ballistic Impact Equiaxed Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Eylon, J.A. Hall, C.M. Pierce, and D.L. Ruckel: Metall. Trans. A, 1976, vol. 7A, pp. 1817–26.Google Scholar
  2. 2.
    R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook, Titanium Alloys, ASM International, Materials Park, OH, 1994, pp. 483–636.Google Scholar
  3. 3.
    A. Gysler and G. Lutjering: Metall. Trans. A, 1982, vol. 13A, pp. 1435–43.Google Scholar
  4. 4.
    S.L. Semiatin and T.R. Bieler: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1871–75.CrossRefGoogle Scholar
  5. 5.
    B.K. Kad, S.E. Schoenfeld, and M.S. Burkins: Mater. Sci. Eng., 2002, vol. A322, pp. 241–51.Google Scholar
  6. 6.
    A.L. Wingrove: Metall. Trans. A, 1973, vol. 4A, pp. 1829–33.Google Scholar
  7. 7.
    S.P. Timothy and I.M. Hutchings: Acta Metall., 1985, vol. 33, pp. 667–76.CrossRefGoogle Scholar
  8. 8.
    D.-G. Lee, S. Lee, C. Lee, and S. Hur: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2541–48.CrossRefGoogle Scholar
  9. 9.
    H.T. Li, Y.M. Zhang, and D.Z. Yang: Mater. Sci. Eng., 2000, vol. A292, pp. 130–32.Google Scholar
  10. 10.
    Q. Xue, M.A. Meyers, and V.F. Nesterenko: Acta Mater., 2002, vol. 50, pp. 575–96.CrossRefGoogle Scholar
  11. 11.
    D.-G. Lee, S. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2004, vol. A366, pp. 25–37.Google Scholar
  12. 12.
    M.A. Meyers, G. Subhash, B. Kad, and L. Prasad: Mech. Mater., 1994, vol. 17, pp. 175–93.CrossRefGoogle Scholar
  13. 13.
    H.J. Ryu, S.H. Hong, D.-K. Kim, and S. Lee: Met. Mater., 1998, vol. 4, pp. 367–71.Google Scholar
  14. 14.
    H.A. Grebe, H.-R. Pak, and M.A. Meyers: Metall. Trans. A, 1985, vol. 16A, pp. 761–75.Google Scholar
  15. 15.
    A. Molinari, C. Musquar, and G. Sutter: Int. J. Plasticity, 2002, vol. 18, pp. 443–59.CrossRefGoogle Scholar
  16. 16.
    S.P. Timothy: Acta Metall., 1987, vol. 35, pp. 301–06.CrossRefGoogle Scholar
  17. 17.
    A. Marchand and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83.CrossRefGoogle Scholar
  18. 18.
    M.A. Meyers and C.L. Wittman: Metall. Trans. A, 1990, vol. 21A, pp. 3153–64.Google Scholar
  19. 19.
    M.E. Backman and W. Goldsmith: Int. J. Eng. Sci., 1978, vol. 16, pp. 1–99.CrossRefGoogle Scholar
  20. 20.
    M.A. Meyers and H.-R. Pak: Acta Metall., 1986, vol. 34, pp. 2493–99.CrossRefGoogle Scholar
  21. 21.
    B.K. Kad, S.E. Schoenfeld, and M.S. Burkins: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 937–47.Google Scholar
  22. 22.
    D.-G. Lee, S. Kim, S. Lee, and C.S. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 315–24.Google Scholar
  23. 23.
    D.-G. Lee, S. Lee, C.S. Lee, and S. Hur: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2541–48.CrossRefGoogle Scholar
  24. 24.
    Metals Handbook, 9th ed., ASM, Metals Park, OH, 1990, vol. 8, pp. 218–24.Google Scholar
  25. 25.
    D.-K. Kim, S. Lee, and H.-S. Song: Metall. Mater., 1998, vol. 4, pp. 508–15.Google Scholar
  26. 26.
    C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22–32.CrossRefGoogle Scholar
  27. 27.
    J.W. Hutchinson: Scripta Metall., 1984, vol. 18, pp. 421–22.CrossRefGoogle Scholar
  28. 28.
    C.F. Hickey, Jr.: Metallic Materials for Lightweight Applications, Proceeding of the 40th Sagamore Army Materials Research Conference, E.B. Kula and M.G.H. Wells, eds., Plymouth, MA, 1993, pp. 243–53.Google Scholar
  29. 29.
    M.F. Kanninen and C.H. Popelar: Advanced Fracture Mechanics, Oxford University Press, New York, NY, 1985, pp. 273–98.Google Scholar
  30. 30.
    C.L. Wittman, M.A. Meyers, and H.-R. Pak: Metall. Trans. A, 1990, vol. 21A, pp. 707–16.Google Scholar
  31. 31.
    Y. Me-Bar and D. Shechtman: Mater. Sci. Eng., 1983, vol. 58, pp. 181–88.CrossRefGoogle Scholar
  32. 32.
    M.C. Mataya, M.J. Carr, and G. Krauss: Metall. Trans. A, 1982, vol. 13A, pp. 1263–74.Google Scholar
  33. 33.
    M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, and T.R. McNelley: Acta Mater., 2003, vol. 51, pp. 1307–25.CrossRefGoogle Scholar
  34. 34.
    K. Cho, S. Lee, S.R. Nutt, and J. Duffy: Acta Metall., 1993, vol. 41, pp. 923–32.CrossRefGoogle Scholar
  35. 35.
    H.J. McQueen: in Hot Deformation of Aluminum Alloys, T.G. Langdon, ed., TMS, Warrendale, PA, 1991, pp. 31–38.Google Scholar
  36. 36.
    P.W. Leech: Metall. Trans. A, 1985, vol. 16A, pp. 1900–03.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • Dong-Geun Lee
    • 1
  • You Hwan Lee
    • 1
  • Sunghak Lee
    • 1
    • 2
  • Chong Soo Lee
    • 1
    • 2
  • Sun-Moo Hur
    • 3
  1. 1.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.the Materials Science and Engineering DepartmentPohang University of Science and TechnologyKorea
  3. 3.the Agency for Defense DevelopmentDaejeonKorea

Personalised recommendations