Advertisement

Metallurgical and Materials Transactions A

, Volume 35, Issue 3, pp 985–996 | Cite as

Effect of simulated thermal cycles on the microstructure of the heat-affected zone in HSLA-80 and HSLA-100 steel plates

  • M. Shome
  • O. P. Gupta
  • O. N. Mohanty
Article

Abstract

The influence of weld thermal simulation on the transformation kinetics and heat-affected zone (HAZ) microstructure of two high-strength low-alloy (HSLA) steels, HSLA-80 and HSLA-100, has been investigated. Heat inputs of 10 kJ/cm (fast cooling) and 40 kJ/cm (slow cooling) were used to generate single-pass thermal cycles with peak temperatures in the range of 750 °C to 1400 °C. The prior-austenite grain size is found to grow rapidly beyond 1100 °C in both the steels, primarily with the dissolution of niobium carbonitride (Nb(CN)) precipitates. Dilatation studies on HSLA-80 steel indicate transformation start temperatures (T s ) of 550 °C to 560 °C while cooling from a peak temperature (T p ) of 1000 °C. Transmission electron microscopy studies show here the presence of accicular ferrite in the HAZ. The T s value is lowered to 470 °C and below when cooled from a peak temperature of 1200 °C and beyond, with almost complete transformation to lath martensite. In HSLA-100 steel, the T s value for accicular ferrite is found to be 470 °C to 490 °C when cooled from a peak temperature of 1000 °C, but is lowered below 450 °C when cooled from 1200 °C and beyond, with correspondingly higher austenite grain sizes. The transformation kinetics appears to be relatively faster in the fine-grained austenite than in the coarse-grained austenite, where the niobium is in complete solid solution. A mixed microstructure consisting of accicular ferrite and lath martensite is observed for practically all HAZ treatments. The coarse-grained HAZ (CGHAZ) of HSLA-80 steel shows a higher volume fraction of lath martensite in the final microstructure and is harder than the CGHAZ of HSLA-100 steel.

Keywords

Ferrite Austenite Martensite Material Transaction Heat Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O.R. Myhr and O. Grong: Acta Metall. Mater., 1990, vol. 38, pp. 449–60.CrossRefGoogle Scholar
  2. 2.
    L.E. Svensson: Control of Microstructures and Properties in Steel Arc Welds, CRC Press, Boca Raton, FL, 1994, pp. 101–06.Google Scholar
  3. 3.
    R.E. Dolby: Weld. J., 1979, vol. 58, pp. 225s-238s.Google Scholar
  4. 4.
    D. Radaj: Heat Effects of Welding, Springer-Verlag Publications, Heidelberg, 1992, pp. 100–03.Google Scholar
  5. 5.
    J.C. Ion, K.E. Easterling, and M.F. Ashby: Acta Metall., 1984, vol. 32, pp. 1949–62.CrossRefGoogle Scholar
  6. 6.
    M.R. Krishnadev, J.T. Bowker, J.T. McGrath, V.K. Vasudevan, and K.D. Challenger: Proc. 2nd Int. Conf. on Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 799–803.Google Scholar
  7. 7.
    M.R. Krishnadev, W.L. Zhang, and J.T. Bowker: Proc. 3rd Int. Conf. on Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 599–603.Google Scholar
  8. 8.
    A.D. Wilson: J. Met., 1987, vol. 29, pp. 39–48.Google Scholar
  9. 9.
    S.D. Bhole and A.G. Fox: Can. Metall. Q., 1996, vol. 35, pp. 151–57.CrossRefGoogle Scholar
  10. 10.
    R.W. Fonda, G. Spanos, and R.A. Vandermeer: Proc. 4th Int. Conf. on Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 277–82.Google Scholar
  11. 11.
    S.W. Thompson: 40th MWSP Conf. Proc., ISS, Warrendale, PA, 1998, pp. 663–73.Google Scholar
  12. 12.
    G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3277–93.Google Scholar
  13. 13.
    O. Grong: Metallurgical Modelling of Welding, The Institute of Materials, London, 1997, pp. 409–11.Google Scholar
  14. 14.
    C.E. Cross, O. Grong, S. Liu, and J.F. Capes: in Applied Metallography, G.F. Vander Voort, ed., Van Nostrand Reinhold, New York, NY, 1986, pp. 197–210.Google Scholar
  15. 15.
    P.L. Harrison and R.A. Farrar: Int. Mater. Rev., 1989, vol. 34, pp. 35–51.Google Scholar
  16. 16.
    A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: Proc. Int. Conf. on Microalloyed HSLA Steel, Microalloying ’88, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 259–75.Google Scholar
  17. 17.
    S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. mater. Trans. A, 1990, vol. 21A, pp. 1493–1507.Google Scholar
  18. 18.
    S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–71.Google Scholar
  19. 19.
    N.N. Rykalin: Berechnung der Wärmevorgänge beim Schweissen, VEB Verlag Technik, Berlin, 1957.Google Scholar
  20. 20.
    S.W. Thompson and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1573–88.Google Scholar
  21. 21.
    G.R. Speich and T.M. Scoonover: in Processing, Microstructure and Properties of HSLA Steels, A.J. DeArdo, ed., TMS, Warrendale, PA, 1988, pp. 263–86.Google Scholar
  22. 22.
    A.G. Fox, S. Mikalac, and M.G. Vassilaros: Proc. G.R. Speich Symp., ISS, Warrendale, PA, 1992, pp. 155–61.Google Scholar
  23. 23.
    M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: Key Eng. Mater., Trans Tech Publication, Aedermannsdorf, Switzerland, 1993, vols. 84–85, pp. 209–36.Google Scholar
  24. 24.
    M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: J. Mater. Eng. Performance, 1998, vol. 7, pp. 247–57.CrossRefGoogle Scholar
  25. 25.
    S.K. Dhua, D. Mukerjee, and D.S. Sarma: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2259–70.CrossRefGoogle Scholar
  26. 26.
    D. Wenpu, F. Zuabao, and Y. Lang: Mater. Characterization, 1996, vol. 37, pp. 169–75.CrossRefGoogle Scholar
  27. 27.
    O. Grong: Metallurgical Modelling of Welding, The Institute of Materials, London, 1997, pp. 303–20.Google Scholar
  28. 28.
    K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.Google Scholar
  29. 29.
    S. Suzuki and H.K.D.H. Bhadeshia: Mater. Sci. Eng., 1994, vol. A186, pp. 157–62.Google Scholar
  30. 30.
    R.W.K. Honeycombe and H.K.D.H. Bhadesia: Steels—Microstructure and Properties, Edward Arnold, London, 1995, p. 103Google Scholar
  31. 31.
    T. Gladman and F.B. Pickering: J. Iron Steel. Inst., 1967, vol. 205, pp. 653–64.Google Scholar
  32. 32.
    L.J. Cuddy and L.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989–95.Google Scholar
  33. 33.
    E.J. Palmiere, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 277–86.Google Scholar
  34. 34.
    P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore: Iron Steel Inst. Jpn. Int. 1996, vol. 36, pp. 194–200.Google Scholar
  35. 35.
    M.F. Ashby and K.E. Easterling: Acta Metall., 1982, vol. 30, pp. 1969–78.CrossRefGoogle Scholar
  36. 36.
    I. Anderson and O. Grong: Acta Metall., 1995, vol. 43, pp. 2673–88.CrossRefGoogle Scholar
  37. 37.
    M. Shome, D.S. Sarma, O.P. Gupta, and O.N. Mohanty: Iron Steel Inst. Jpn. Int. 2003, vol. 43, pp. 1431–37.Google Scholar
  38. 38.
    T.A. Kop, P.G.W. Remijn, J. Sietsma, and S. Van der Zwaaag: Materials Science Forum, Trans Tech Publication, Aedermannsdorf, Switzerland, 1998, vols. 284–286, pp. 193–200.Google Scholar
  39. 39.
    G.I. Rees, J. Perdrix, T. Maurickx, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 194, pp. 179–86.CrossRefGoogle Scholar
  40. 40.
    H.K.D.H. Bhadeshia: Proc. 3rd Int. Conf. on Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 213–22.Google Scholar
  41. 41.
    P.A. Manohar, T. Chandra, and C.R. Killmore: Iron Steel Inst. Jpn. Int. 1996, vol. 36, pp. 1486–93.Google Scholar
  42. 42.
    T. Abe, K. Tsukada, and J. Kozasu: Proc. Int. Conf. on HSLA Steels’85, ASM INTERNATIONAL, Material Park, OH, 1986, pp. 103–11.Google Scholar
  43. 43.
    G. Krauss and A.R. Marder: Metall. Trans., 1971, vol. 2, pp. 2343–57.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • M. Shome
    • 1
  • O. P. Gupta
    • 2
  • O. N. Mohanty
    • 3
  1. 1.the R&D and Scientific Services DivisionTata SteelJamshedpurIndia
  2. 2.the Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia
  3. 3.the Department of Metallurgical and Material EngineeringIndian Institute of TechnologyKaragpurIndia

Personalised recommendations