Metallurgical and Materials Transactions A

, Volume 34, Issue 8, pp 1599–1609 | Cite as

Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

  • I. B. Timokhina
  • P. D. Hodgson
  • E. V. Pereloma
Article

Abstract

Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, Cambridge, United Kingdom, 1997, pp. 1–17.Google Scholar
  2. 2.
    V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–59.Google Scholar
  3. 3.
    W.W. Gerberich, P.L. Hemmings, M.D. Merz, and V.F. Zackay: Trans. Techn. Notes, 1968, vol. 61, pp. 843–47.Google Scholar
  4. 4.
    S.K. Liu and J. Zhang: Metall. Trans. A, 1990, vol. 21A, pp. 1517–25.Google Scholar
  5. 5.
    O. Matsumura, Y. Sakuma, Y. Ishii, and J. Zhao: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (10), pp. 1110–16.Google Scholar
  6. 6.
    Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98.Google Scholar
  7. 7.
    L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 874–81.Google Scholar
  8. 8.
    D.Q. Bai, A. DiChiro, and S. Yue: Mater. Sci. Forum, 1998, vols. 284–286, pp. 253–60.Google Scholar
  9. 9.
    F.B. Pickering: Physical Metallurgy and Design of Steels, Applied Science Publishers Ltd., Barking, Essex, United Kingdom, 1978, p. 64.Google Scholar
  10. 10.
    O. Kawano, J. Wakita, K. Esaka, and H. Abe: Iron Steel Inst. Jpn. Int., 1996, vol. 82, pp. 232–44.Google Scholar
  11. 11.
    K. Fujiwara and S. Okaguchi: Mater. Sci. Forum, 1998, vols. 284–286, pp. 271–78.Google Scholar
  12. 12.
    P.D. Hodgson, D.C. Collison, and B. Perret: Proc. 7th Int. Symp. on Physical Simulation of Casting, Hot Rolling and Welding, 1997, Dynamic Systems Inc., Japan, vols. 21–23, pp. 219–29.Google Scholar
  13. 13.
    A. Zarei-Hanzaki: Ph.D. Thesis, McGill University, Montreal, 1994, pp. 44–45.Google Scholar
  14. 14.
    G.E. Lucas, J.W. Sheckherd, and G.R. Obette: Shear Punch and Microhardness Tests for Strength and Ductility Measurements, ASTM STP 888, ASTM, Philadelphia, PA, 1986, pp. 112–40.Google Scholar
  15. 15.
    I.B. Timokhina, E.V. Pereloma, and P.D. Hodgson: Mater. Sci. Technol., 2001, vol. 17, pp. 135–40.CrossRefGoogle Scholar
  16. 16.
    S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Trans. A, 1990, vol. 21A, pp. 1493–507.Google Scholar
  17. 17.
    H.K.D.H. Bhadeshia: Bainite in Steel, Transformation, Microstructure and Properties, 2nd ed., The Institute of Materials, Cambridge University Press, Cambridge, United Kingdom, 2001, pp. 201–24 and 237.Google Scholar
  18. 18.
    S. Yue, A. DiChiro, and A. Zarei-Hanzaki: JOM, 1997, pp. 59–61.Google Scholar
  19. 19.
    R. Bengochea, B. Lopez, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 417–26.CrossRefGoogle Scholar
  20. 20.
    D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45 (9), pp. 3871–86.CrossRefGoogle Scholar
  21. 21.
    N. Hansen: Scripta Metall., 1992, vol. 27, pp. 1447–52.CrossRefGoogle Scholar
  22. 22.
    D.V. Edmonds and R.C. Cochrane: Metall. Trans. A, 1990, vol. 21A, pp. 1527–39.Google Scholar
  23. 23.
    K. Fujiwara and S. Okaguchi: Mater. Sci. Forum, 1998, vols. 284–286, pp. 271–78.CrossRefGoogle Scholar
  24. 24.
    A.J. DeArdo: Thermomechanical Processing of Steels, 2000, IOM, London, vol. 1, pp. 309–21.Google Scholar
  25. 25.
    P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 1116–28.Google Scholar
  26. 26.
    F. Hassani and S. Yue: 41st MWSP Conf. Proc., ISS, Warrendale, PA, 1999, vol. XXXVII, pp. 493–98.Google Scholar
  27. 27.
    G. Langford and M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38.Google Scholar
  28. 28.
    T. Kvackaj and I. Mamuzic: Iron Steel Inst. Jpn. Int., 1998, vol. 38 (11), pp. 1270–76.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • I. B. Timokhina
    • 2
  • P. D. Hodgson
    • 1
  • E. V. Pereloma
    • 2
  1. 1.School of Engineering and TechnologyDeakin UniversityAustralia
  2. 2.School of Physics and Materials EngineeringMonash UniversityVICAustralia

Personalised recommendations