Advertisement

High-temperature deformation behavior of a gamma TiAl alloy—Microstructural evolution and mechanisms

  • Jeoung Han Kim
  • Young Won Chang
  • Chong Soo Lee
  • Tae Kwon Ha
Article

Abstract

The present investigation was carried out in the context of the internal-variable theory of inelastic deformation and the dynamic-materials model (DMM), to shed light on the high-temperature deformation mechanisms in TiAl. A series of load-relaxation tests and tensile tests were conducted on a fine-grained duplex gamma TiAl alloy at temperatures ranging from 800 °C to 1050 °C. Results of the load-relaxation tests, in which the deformation took place at an infinitesimal level (ε ≅ 0.05), showed that the deformation behavior of the alloy was well described by the sum of dislocation-glide and dislocation-climb processes. To investigate the deformation behavior of the fine-grained duplex gamma TiAl alloy at a finite strain level, processing maps were constructed on the basis of a DMM. For this purpose, compression tests were carried out at temperatures ranging from 800 °C to 1250 °C using strain rates ranging from 10 to 10−4/s. Two domains were identified and characterized in the processing maps obtained at finite strain levels (0.2 and 0.6). One domain was found in the region of 980 °C and 10−3/s with a peak efficiency (maximum efficiency of power dissipation) of 48 pct and was identified as a domain of dynamic recrystallization (DRx) from microstructural observations. Another domain with a peak efficiency of 64 pct was located in the region of 1250 °C and 10−4/s and was considered to be a domain of superplasticity.

Keywords

Material Transaction Power Dissipation Inelastic Deformation Intergranular Crack TiAl Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y.-W. Kim: J. Met., 1995, vol. 47, pp. 39–41.Google Scholar
  2. 2.
    R.W. Hayes and B. London: Acta Metall., 1992, vol. 40, p. 2167.CrossRefGoogle Scholar
  3. 3.
    P.L. Martin, M.G. Mendiratta, and H.A. Lipsitt: Metall. Trans. A, 1983, vol. 14A, p. 2170.Google Scholar
  4. 4.
    Y.-W. Kim and F.H. Froes: in High Temperature Aluminides and Intermetallics, S.H. Wang et al., eds., TMS, Warrendale, PA, 1990, pp. 465–92.Google Scholar
  5. 5.
    S.C. Huang and E.L. Hall: Metall. Trans. A, 1991, vol. 22A, p.427.Google Scholar
  6. 6.
    S.L. Semiatin, D.C. Vollmer, S. El-Soudani, and C. Su: Scripta Metall. Mater., 1991, vol. 25, p. 1409.CrossRefGoogle Scholar
  7. 7.
    H.E. Deve, A.G. Evans, and D.S. Shih: Acta Metall. Mater., 1992, vol. 40, p. 1259.CrossRefGoogle Scholar
  8. 8.
    T. Kawabata, T. Kanai, and O. Izumi: Acta Metall. Mater., 1985, vol. 33, pp. 1355–66.CrossRefGoogle Scholar
  9. 9.
    M. Nobuki and T. Tsujimoto: Iron Steel Inst. Jpn. Int. 31 (1991), pp. 931–937.Google Scholar
  10. 10.
    T.K. Ha and Y.W. Chang: Acta Mater. 1998, vol. 46, p. 2741.CrossRefGoogle Scholar
  11. 11.
    Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide—A Compendium of Processing Maps, ASM INTERNATIONAL, Materials Park, OH, 1997.Google Scholar
  12. 12.
    J.S. Kim, Y.W. Chang, and C.S. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, p. 217.CrossRefGoogle Scholar
  13. 13.
    J.S. Kim, W.J. Nam, and C.S. Lee: Met. Mater., 1998, vol. 4, p. 1041.CrossRefGoogle Scholar
  14. 14.
    D. Lee and E.W. Hart: Metall. Trans., 1971, vol. 2, pp. 1245–48.Google Scholar
  15. 15.
    T.K. Ha, H.J. Sung, K.S. Kim, and Y.W. Chang: Mater. Sci. Eng. 1999, vol. 271, p. 166.Google Scholar
  16. 16.
    F. Appel, U. Lorenz, M. Oehring, U. Sparka, and R. Wagner: Mater. Sci. Eng. A, 1997, vol. 233 (1–2).CrossRefGoogle Scholar
  17. 17.
    W.J. Zhang, Z.C.C. Liu, G.L. Chen, and Y.-W. Kim: Mater. Sci. Eng., 1999, vol. A271, pp. 416–23.Google Scholar
  18. 18.
    T.K. Ha and Y.W. Chang: Scripta Mater., 1996, vol. 35, p. 1317.CrossRefGoogle Scholar
  19. 19.
    J.S. Kim, J.H. Kim, Y.T. Lee, C.G. Park, and C.S. Lee: Mater. Sci. Eng. A, 1999, vol. A263, pp. 272–80.Google Scholar
  20. 20.
    V. Seetharaman and C.M. Lombard: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, (Warrendale, PA, 1991), pp. 237–51.Google Scholar
  21. 21.
    H. Ziegler: in Progress in Solid Mechanics, I.N. Sneddon and R. Hill, eds., Wiley, New York, NY, 1965, vol. 4, pp. 91–193.Google Scholar
  22. 22.
    N. Ravichandran and Y.V.R.K. Prasad: Mater. Sci. Eng., 1992, vol. A156, p. 195.Google Scholar
  23. 23.
    N. Srinivasan and Y.V.R.K. Prasad: Mater. Sci. Technol., 1992, vol. 9, p. 206.Google Scholar
  24. 24.
    O. Sivakesavam, I.S. Rao, and Y.V.R.K. Prasad: Mater. Sci. Technol., 1993, vol. 9, p. 805.Google Scholar
  25. 25.
    J.K. Chakravarty, Y.V.R.K. Prasad, and M.K. Asundi: Metall. Trans. A, 1991, vol. 22A, pp. 829–36.Google Scholar
  26. 26.
    J.A. Bailey and A.R.E. Singer: J. Inst. Met., 1963–64, vol. 92, p. 404.Google Scholar
  27. 27.
    N. Ravichandran and Y.V.R.K. Prasad: Metall. Trans. A, 1991, vol. 22A, pp. 2339–48.Google Scholar
  28. 28.
    G. Hug, A. Loiseau, and P. Veyssiere: Phil. Mag., 1988, vol. 57, p. 499.Google Scholar
  29. 29.
    J. Panova and D. Farkas: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 331–38.Google Scholar
  30. 30.
    D.G. Morris, S. Gunter, and M. Leboeuf: Phil. Mag. A, 1994, vol. 69, p. 527.Google Scholar
  31. 31.
    P.K. Sagar and Y.V.R.K. Prasad: Z. Metall., 1998, vol. 89 (6), pp. 433–41.Google Scholar
  32. 32.
    C.M. Sabinash, S.M.L. Sastry, and K.L. Jerina: Mater. Sci. Eng. A, 1995, vols. A192–A193, pp. 837–47.Google Scholar
  33. 33.
    N. Fujitsuna, H. Ohyama, Y. Miyamoto, and Y. Ashida: Iron Steel Inst. Jpn. Int., 1991, vol. 31 (10), pp. 1147–53.Google Scholar
  34. 34.
    M.A. Morris and M. Leboeuf: Intermetallics, 1997, vol. 5, pp. 339–54.CrossRefGoogle Scholar
  35. 35.
    W.B. Lee, H.S. Yang, Y.-W. Kim, and A.K. Mukherjee: Scripta Metall., 1993, vol. 29, pp. 1403–08.CrossRefGoogle Scholar
  36. 36.
    Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1988, vol. 43 (6), pp. 244–58.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • Jeoung Han Kim
    • 1
  • Young Won Chang
    • 1
  • Chong Soo Lee
    • 1
  • Tae Kwon Ha
    • 2
  1. 1.the Center for Advanced Aerospace Materials and the Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.the Research Institute of Industrial Science and TechnologyPohangKorea

Personalised recommendations