Advertisement

Metallurgical and Materials Transactions A

, Volume 34, Issue 11, pp 2493–2504 | Cite as

Effect of cooling rate on the as-quenched microstructure and mechanical properties of HSLA-100 steel plates

  • S. K. Dhua
  • D. Mukerjee
  • D. S. Sarma
Article

Abstract

The effect of cooling rate on the as-quenched microstructure and mechanical properties of a 14-mm-thick HSLA-100 steel using various cooling media such as brine, water, oil, air, and furnace has been studied. While quenching in brine, water, and oil resulted in lath martensite structures, the granular bainite and martensite-austenite (M-A) constituents were found in air- or furnace-cooled specimens. The average lath spacing increased slightly on decreasing the cooling rate (300 nm in brine-quenched specimen to 400 nm in oil-quenched specimen). The precipitates of Cu and Nb(C, N) were observed in all the quenching conditions except in the brine-quenched specimen. The as-quenched strength and toughness of the brine-, water-, and oil-quenched specimens were higher (yield strength: 894 to 997 MPa, ultimate tensile strength: 1119 to 1153 MPa, and Charpy V-notch energies: 65 to 70 J at −85 °C) than those of air- and furnace-cooled specimens (yield strength: 640 to 670 MPa, ultimate tensile strength: 944 to 1001 MPa, and Charpy V-notch energies: 10 to 20 J at −85 °C). For industrial production of HSLA-100 steel plates, oil or water quenching is recommended in lower thickness plates (<25 mm). For production of thicker plates, however, water quenching is more suitable.

Keywords

Martensite Material Transaction Bainite Select Area Diffraction Acicular Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Jesseman and G.J. Murphy: J. Heat Treating, 1984, vol. 3, pp. 228–36.Google Scholar
  2. 2.
    M.T. Miglin, J.P. Hirth, A.R. Rosenfield, and W.A.T. Clark: Metall. Trans. A, 1986, vol. 17A, pp. 791–95.Google Scholar
  3. 3.
    G.E. Hicho, C.H. Brady, L.C. Smith, and R.J. Fields: J. Heat Treating, 1987, vol. 5, pp. 7–19.Google Scholar
  4. 4.
    Takashi Abe, Masayoshi Kurihara, and Histoshi Tagawa: Trans. Iron Steel Inst. Jpn. 1987, vol. 27, pp. 478–84.Google Scholar
  5. 5.
    G.E. Hicho and R.J. Fields: J. Heat Treating, 1988, vol. 6, pp. 77–85.Google Scholar
  6. 6.
    A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: Proc. Int. Conf. on Microalloyed HSLA Steel, Microalloying ’88, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 259–75.Google Scholar
  7. 7.
    S.W. Thomson, D.J. Colvin, and G. Krauss: Scripta Metall., 1988, vol. 22, pp. 1069–74.CrossRefGoogle Scholar
  8. 8.
    S.W. Thomson, D.J. Colvin, and G. Krauss: Metall. Trans. A., 1990, vol. 21A, pp. 1493–507.Google Scholar
  9. 9.
    S.S. Banadkouki Ghasemi, D. Yu, and D.P. Dunne: Iron Steel Inst. Jpn., 1996, vol. 36, pp. 61–67.Google Scholar
  10. 10.
    S.W. Thompson, D.J. Kolvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1573–88.Google Scholar
  11. 11.
    A.D. Wilson: J. Met., 1987, vol. 29, pp. 36–38.Google Scholar
  12. 12.
    S.W. Thompson, D.J. Kolvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1554–68.Google Scholar
  13. 13.
    S.K. Sen, A. Ray, R. Avtar, S.K. Dhua, P. Jha, P.P. Sengupta, and S. Jha: J. Mater. Eng. Performance, 1998, vol. 7, pp. 504–10.CrossRefGoogle Scholar
  14. 14.
    I. LeMay and M.R. Krishnadev: Copper in Iron and Steel, I. LeMay and L.M. Schetky, eds., John Wiley & Sons, New York, NY, 1982, pp. 5–43.Google Scholar
  15. 15.
    B.A. Graville: Proc. Int. Conf. on Welding of HSLA (Microalloyed) Structural Steels, ASM INTERNATIONAL, Metals Park, OH, 1978, pp. 85–101.Google Scholar
  16. 16.
    E.J. Czyryca: Key Engineering Materials, Trans Tech Publications, Aedermanns Switzerland, 1993, vols. 84–85, pp. 491–520.Google Scholar
  17. 17.
    E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, and J.P. Gudas: Nav. Eng. J., 1990, May, pp. 63–82.Google Scholar
  18. 18.
    R.P. Foley and M.E. Fine: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern HSLA Steels, ISS, Warrendale, PA, 1991, pp. 315–30.Google Scholar
  19. 19.
    A.K. Lis, M. Mujahid, C.I. Garcia, and A.J. DeArdo: Speich Symp. Proc., ISS, Warrendale, PA, 1992, pp. 29–38.Google Scholar
  20. 20.
    A.G. Fox, S. Mikalac, and M.G. Vassilaros: Speich Symp. Proc., ISS, Warrendale, PA, 1992, pp. 155–61.Google Scholar
  21. 21.
    J.W. Yoo, W.Y. Choo, and Y.W. Kim: Proc. Int. Conf. on Processing, Microstructures and Properties of Microalloyed and Other Modern HSLA Steels, ISS, Warrendale, PA, 1991, pp. 371–80.Google Scholar
  22. 22.
    M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: J. Mater. Eng. Performance, 1998, vol. 7, pp. 247–57.CrossRefGoogle Scholar
  23. 23.
    Guen Chul Hwang, Sunghak Lee, Jang Yong Yoo, and Wung Yong Choo: Mater. Sci. Eng., 1998, vol. A252, pp. 256–68.Google Scholar
  24. 24.
    S.K. Dhua, D. Mukerjee, and D.S. Sarma: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2259–70.Google Scholar
  25. 25.
    S.K. Dhua, Amitava Ray, and D.S. Sarma: Mater. Sci. Eng. A, 2001, vol. A318, pp. 197–210.Google Scholar
  26. 26.
    B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.Google Scholar
  27. 27.
    B.L. Bramfitt and J.G. Speer: Mechanical Working and Steel Processing Proc., 1989, pp. 443–54.Google Scholar
  28. 28.
    G.J.P. Buchi, J.H.R. Page, and M.P. Sidey: J. Iron Steel Inst., 1965, vol. 203, pp. 291–98.Google Scholar
  29. 29.
    W.E. Creswick: Commercial Development of a Rimmed Low Alloy Precipitation Hardening High Strength Steel, ISS Publication 104, Thonet Press, London, England, 1967, pp. 86–92.Google Scholar
  30. 30.
    G. Thomas: The Physical Metallurgy and Alloy Design of Dual Phase Steels, Frontiers in Materials Technologies, M.A. Meyers and O.T. Inal, eds., Elsevier Science Publishers, Amsterdam, 1985, p. 89.Google Scholar
  31. 31.
    M.R. Krishnadev, W.L. Zhang, and J.T. Bowker: Proc. Int. Symp. on Low-Carbon Steels for the 90’s, R. Asfahani and G. Tither, eds., TMS, Warrendale, PA, 1993, pp. 501–09.Google Scholar
  32. 32.
    C. Shiga: Proc. Int. Conf. on the Metallurgy, Welding and Qualification of Microalloyed (HSLA) Steel Weldments, J.J. Hickey, D.G. Howder, and M.D. Randall, eds., AWS, Miami, Florida, 1990, pp. 327–50.Google Scholar
  33. 33.
    Zhang Shouhua, Zhang Hong, and Yuan Yi: Proc. Int. Conf. on HSLA Steels, Metallurgy and Applications, J.M. Gray, T. Ko, Zhang Shouhua, W. Baorong, and Xie Xishan, eds., ASM INTERNATIONAL, Metals Park, OH, 1986, pp. 113–20.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • S. K. Dhua
    • 1
  • D. Mukerjee
    • 1
  • D. S. Sarma
    • 2
  1. 1.the R&D Centre for Iron and SteelSteel Authority of India LimitedRanchiIndia
  2. 2.the Department of Metallurgical EngineeringBanaras Hindu UniversityVaranasiIndia

Personalised recommendations