Advertisement

Metallurgical and Materials Transactions A

, Volume 33, Issue 11, pp 3433–3442 | Cite as

Fatigue deformation-induced response in a superduplex stainless steel

  • Chwee-Sim Goh
  • Tick-Hon Yip
Article

Abstract

The cyclic deformation behavior of SAF 2507 superduplex stainless steel (SDSS) was studied under constant plastic-strain amplitudes. The cyclic hardening/softening curves show initial hardening, followed by softening and, finally, saturation behavior. Two regimes can be differentiated in the cyclic stress-strain curve (CSSC) of SDSS. The transition point at which the cyclic strain-hardening rate changes is identified to be ɛ p/2=7 × 10−3. Transmission electron microscopy (TEM) results on dislocation structures suggested that there is a close relationship between the CSSC, hardening/softening curves, and the dislocation substructure evolution. In the low-plastic-strain-amplitude regime of the CSSC, the dislocation activity in the austenite grains is found to be higher than that in the ferrite grains. At higher plastic strain amplitudes, low-energy dislocation structures are found in the ferrite grains, while clusters and bundles of dislocations can be observed in the austenite grains. Strain localization due to formation of these structures resulted in a decrease in the cyclic strain-hardening rate within the high-plastic-strain-amplitude regime. Dislocation substructure evolution is also used to explain the shape of the hardening/softening curve.

Keywords

Ferrite Austenite Material Transaction Dislocation Structure Duplex Stainless Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mateo, L. Llanes, L. Iturgoyen, and M. Anglada: Acta Mater., 1996, vol. 3 (44), pp. 1143–53.CrossRefGoogle Scholar
  2. 2.
    Y.B. Xia and Z.G. Wang: Mater. Sci. Eng., 1992, vol. A151, pp. 29–35.Google Scholar
  3. 3.
    L. Llanes, A. Mateo, L. Iturgoyen, and M. Anglada: Acta Mater., 1996, vol. 10 (44), 3967–78.CrossRefGoogle Scholar
  4. 4.
    T. Magnin and J.M. Lardon: Mater. Sci. Eng., 1988, vol. A104, pp. 21–28.Google Scholar
  5. 5.
    S. Degallaix, A. Seddouki, G. Degallaix, T. Kruml, and J. Polák: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 1 (18), pp. 65–77.Google Scholar
  6. 6.
    K. Obrtlik, T. Kruml, and J. Polák: Mater. Sci. Eng., 1994, vol. A187, pp. 1–9.Google Scholar
  7. 7.
    K.T. Kruml, T.J. Polák, K. Obrtlik, and S. Degallaix: Acta Mater., 1997, vol. 12 (45), pp. 5145–51.CrossRefGoogle Scholar
  8. 8.
    D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1989, vol. A113, pp. 1–41.Google Scholar
  9. 9.
    Y. Li and C. Laird: Mater. Sci. Eng., 1994, vol. A186, pp. 87–103.Google Scholar
  10. 10.
    M. Klesnil and P. Lukas: Fatigue of Metallic Materials, 2nd ed., Elsevier Science Publishing Co., Inc., New York, NY, 1992.Google Scholar
  11. 11.
    M. Gerland, J. Mendez, P. Violan, and B. Ait Saadi: Mater. Sci. Eng., 1989, A118, pp. 83–95.Google Scholar
  12. 12.
    J.B. Vogt, T. Magnin, and J. Foct: Fatigue Fract. Mater. Struct., 1993, vol. 16, pp. 555–64.CrossRefGoogle Scholar
  13. 13.
    J.B. Vogt, J. Foct, C. Regnard, G. Robert, and J. Dhers: Metall. Trans. A, 1991, vol. 22A, pp. 2385–92.Google Scholar
  14. 14.
    J.O. Nilsson: Scripta Metall., 1983, vol. 17, pp. 593–96.CrossRefGoogle Scholar
  15. 15.
    Matěj Bíly: Cyclic Deformation and Fatigue of Metals, Elsevier Science Publishing Co, Inc., New York, NY, 1993.Google Scholar
  16. 16.
    Z.G. Wang, Z.M. Sun, and S.H. Ai: Mater. Sci. Eng., 1989, vol. A113, pp. 259–65.Google Scholar
  17. 17.
    J.O. Nilsson: Fatigue Eng. Mater. Struct., 1984, vol. 1 (7), pp. 55–64.Google Scholar
  18. 18.
    G. Wahlberg and G.L. Dunlop: Stainless Steel’ 87, The Institute of Metals, London, 1987 pp. 291–99.Google Scholar
  19. 19.
    M. Blicharski: Metall. Sci., 1984, vol. 18, pp. 92–98.CrossRefGoogle Scholar
  20. 20.
    J.O. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–99.Google Scholar
  21. 21.
    www.sandvik.com.Google Scholar
  22. 22.
    T. Magnin, C. Ramade, J. Lepinoux, and L.P. Kubin: Mater. Sci. Eng., 1989, A118, pp. 41–51.Google Scholar
  23. 23.
    S.C. Tjong, L.T. Wu, and N.J. Ho: Mater. Sci. Eng., 1988, vol. 100, pp. 79–84.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Chwee-Sim Goh
    • 1
  • Tick-Hon Yip
    • 2
  1. 1.the Department of Process TechnologySingapore Institute of Manufacturing TechnologySingapore
  2. 2.the School of Material EngineeringNanyang Technological UniversitySingapore

Personalised recommendations