Advertisement

Metallurgical and Materials Transactions A

, Volume 33, Issue 4, pp 1167–1181 | Cite as

The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy

  • George A. YoungJr.
  • John R. Scully
Article

Abstract

The hydrogen-environment embrittlement (HEE)-controlled stage II crack growth rate of AA 7050 (6.09 wt pct Zn, 2.14 wt pct Mg, and 2.19 wt pct Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged (UA), peak-aged (PA), and overaged (OA) conditions were tested in 90 pct relative humidity (RH) air at temperatures between 25 °C and 90 °C. At all test temperatures, an increased degree of aging (from UA to OA) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed an Arrhenius-type temperature dependence, with activation energies between 58 and 99 kJ/mol. For both the normal-copper and low-copper alloys, the fracture path was predominately intergranular at all test temperatures (25 °C to 90 °C) in each temper investigated.

Comparison of the stage II HEE crack growth rates for normal- (2.19 wt pct) and low- (0.06 wt pct) copper alloys in the peak PA aged and OA tempers showed a beneficial effect of copper additions on the stage II crack growth rate in humid air. In the 2.19 wt pct copper alloy, the significant decrease (∼10 times at 25 °C) in the stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. In the 0.06 wt pct copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor (v 0), resulting in a modest (∼2.5 times at 25 °C) decrease in the crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II HEE crack growth rates. The OA, copper-bearing alloys are not intrinsically immune to hydrogen-environment-assisted cracking, but are more resistant due to an increased apparent activation energy for stage II crack growth.

Keywords

Material Transaction Crack Growth Rate Apparent Activation Energy Hydrogen Diffusion Creep Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.V. Hyatt and M.O. Speidel: “Stress-Corrosion Cracking of High-Strength Aluminum Alloys,” Report No. D6-24840, Boeing, Seattle, WA, 1970.Google Scholar
  2. 2.
    M.O. Speidel: in Hydrogen Embrittlement and Stress Corrosion Cracking, Gibala and Hehemann, eds., ASM, Metals Park, OH, 1984, pp. 271–96.Google Scholar
  3. 3.
    F.E. Watkinson and J.C. Scully: Corr. Sci., 1971, vol. 11, pp. 179–82.CrossRefGoogle Scholar
  4. 4.
    L. Christodoulou and H.M. Flower: Acta Metall., 1980, vol. 28, pp. 481–87.CrossRefGoogle Scholar
  5. 5.
    C.D.S. Tuck: Metall. Trans. A, 1985, vol. 16A, pp. 1503–14.Google Scholar
  6. 6.
    G.M. Scamans, R. Alani, and P.R. Swann: Corr. Sci., 1976, vol. 16, pp. 443–59.CrossRefGoogle Scholar
  7. 7.
    G.M. Scamans: Aluminium, 1982, vol. 58, pp. 332–34.Google Scholar
  8. 8.
    G.H. Koch: Corrosion, 1979, vol. 35, pp. 73–78.Google Scholar
  9. 9.
    R.M. Vennett: Trans. ASM, 1969, vol. 62, p. 1007.Google Scholar
  10. 10.
    R.P. Wei: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, Moran, WY, 1980, p. 677.Google Scholar
  11. 11.
    L. Christodoulou: Ph.D. Thesis, Imperial College of Science and Technology, London, 1980.Google Scholar
  12. 12.
    R.E. Ricker and D.J. Duquette: Metall. Trans. A, 1988, vol. 19A, pp. 1775–83.Google Scholar
  13. 13.
    D.R. Lide, ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1991.Google Scholar
  14. 14.
    G.A. Young: Ph.D. Thesis, University of Virginia, Charlottesville, VA, 1999.Google Scholar
  15. 15.
    T. Do, S.J. Splinter, C. Chen, and N.S. McIntyre: Surf. Sci., 1997, vol. 397 (1–3), pp. 192–98.CrossRefGoogle Scholar
  16. 16.
    H.H. Uhlig: Corrosion and Corrosion Control, 3rd ed, John Wiley & Sons, New York, NY, 1985.Google Scholar
  17. 17.
    L.M. Young, G.A. Young, J.R. Scully, and R.P. Gangloff: Lightweight Alloys for Aerospace Applications IV, TMS, Orlando, FL, 1997.Google Scholar
  18. 18.
    G.L. Lewis: Thermodynamics, McGraw-Hill, New York, NY, 1961, pp. 90–114.Google Scholar
  19. 19.
    C.F. Shih: J. Mech. Phys. Sol., 1981, vol. 29 (4), pp. 305–26.CrossRefGoogle Scholar
  20. 20.
    P. Marcus and J. Oudar: in Corrosion Mechanisms in Theory and Practice, Corrosion Technology, P.A. Schweitzer, eds., Marcel Dekker, Inc., New York, NY, 1995.Google Scholar
  21. 21.
    J. Albrecht, A.W. Thompson, and I.M. Bernstein: Metall. Trans. A, 1979, vol. 10A, pp. 1759–66.Google Scholar
  22. 22.
    J. Albrecht, I.M. Bernstein, and A.W. Thompson: Metall. Trans. A, 1982, vol. 13A, pp. 811–20.Google Scholar
  23. 23.
    D.A. Hardwick, A.W. Thompson, and I.M. Bernstein: Metall. Trans. A, 1983, vol. 14A, pp. 2517–26.Google Scholar
  24. 24.
    D.A. Hardwick, A.W. Thompson, and I.M. Bernstein: Corr. Sci., 1988, vol. 28 (12), pp. 1127–37.CrossRefGoogle Scholar
  25. 25.
    P. Guyot and L. Cottignies: Acta Mater., 1996, vol. 44 (10), pp. 4161–67.CrossRefGoogle Scholar
  26. 26.
    F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.CrossRefGoogle Scholar
  27. 27.
    F.S. Lin and J.E.A. Starke: Mater. Sci. Eng., 1980, vol. 43, pp. 65–76.CrossRefGoogle Scholar
  28. 28.
    T.H. Sanders and E.A. Starke: Metall. Trans. A, 1976, vol. 7A, pp. 1407–18.Google Scholar
  29. 29.
    J.T. Staley: Metall. Trans., 1974, vol. 5, pp. 929–32.Google Scholar
  30. 30.
    A. Bigot et al.: Mater. Sci. Forum, 1996, vols. 217–222, pp. 695–700.Google Scholar
  31. 31.
    B.V.N. Rao: Metall. Trans. A, 1981, vol. 12A, pp. 1356–59.Google Scholar
  32. 32.
    K. Rajan, W. Wallace, and J.C. Beddoes: J. Mater. Sci., 1982, vol. 17, pp. 2817–24.CrossRefGoogle Scholar
  33. 33.
    G.M. Scamans, N.J.H. Holroyd, and C.D.S. Tuck: Corr. Sci., 1987, vol. 47 (4), pp. 329–47.CrossRefGoogle Scholar
  34. 34.
    J.R. Pickens, T.J. Langan, and J.A.S. Green: in Environment Sensitive Fracture of Metals and Alloys, United States Navy, Washington, DC, 1987.Google Scholar
  35. 35.
    W. Hepples, M.R. Jarrett, J.S. Crompton, and N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., ASM/NACE/TMS, Kohler, WI, 1988, pp. 383–87.Google Scholar
  36. 36.
    J.M. Chen: Metall. Trans. A, 1977, vol. 8A, pp. 1935–40.Google Scholar
  37. 37.
    C.R. Shastry and G. Judd: Metall. Trans., 1972, vol. 3, pp. 779–82.Google Scholar
  38. 38.
    N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., ASM/NACE/TMS, Kohler, WI, 1988, pp. 311–45.Google Scholar
  39. 39.
    J.T. Staley: “History of Wrought Aluminum Alloy Development,” Report No. 56-86-AS1, Alcoa, Alcoa Center, PA, 1986.Google Scholar
  40. 40.
    J.T. Staley, S.C. Byrne, E.L. Colvin, and K.P. Kinnear: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1587–92.Google Scholar
  41. 41.
    B. Sarkar, M. Marek, and E.A. Starke: Metall. Trans. A, 1981, vol. 12A, pp. 1939–43.Google Scholar
  42. 42.
    E.A. Starke: in Alloying, J.L. Walter, M.R. Jackson, and C.T. Sims, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 165–97.Google Scholar
  43. 43.
    E.A. Starke: in Aluminum Alloys—Contemporary Research and Applications, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, New York, NY, 1989, pp. 35–63.Google Scholar
  44. 44.
    J.E. Hatch: Aluminum Properties and Physical Metallurgy, ASM, Metals Park, OH, 1984.Google Scholar
  45. 45.
    N.Q. Chinh et al.: Z. Metallkd., 1997, vol. 88 (8), pp. 607–611.Google Scholar
  46. 46.
    R.J. Livak and J.M. Papazian: Scripta Metall., 1984, vol. 18, pp. 483–88.CrossRefGoogle Scholar
  47. 47.
    S. Fujikawa, T. Hara, A. Ishida, and K. Hirano: Thermochimica Acta, 1985, vol. 85, pp. 171–74.CrossRefGoogle Scholar
  48. 48.
    M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51.Google Scholar
  49. 49.
    P. Doig, P.E.J. Flewitt, and J.E. Edingtion: Corrosion, 1977, vol. 22 (6), pp. 217–21.Google Scholar
  50. 50.
    J. Busby, J.F. Cleave, and R.L. Cudd: J. Inst. Met., 1971, vol. 99, pp. 41–49.Google Scholar
  51. 51.
    T.J. Langan et al.: Corrosion, 1988, vol. 44 (3), pp. 165–69.Google Scholar
  52. 52.
    R. Alani and P.R. Swann: Br. Corr. J., 1975, vol. 12 (2), pp. 80–85.Google Scholar
  53. 53.
    L. Christodoulou and H.M. Flower: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1980, pp. 493–50.Google Scholar
  54. 54.
    G.M. Scamans: J. Mater. Sci., 1978, vol. 13, pp. 27–36.CrossRefGoogle Scholar
  55. 55.
    Light Metals 1998, P.N. Anyalebechi, ed., TMS, Warrendale, PA, 1998, pp. 827–42.Google Scholar
  56. 56.
    G.W. Lorimer: in Precipitation Processes in Solids, K.C. Russell and H.I. Aaronson, eds., TMS-AIME, Niagara Falls, NY, 1976, pp. 87–119.Google Scholar
  57. 57.
    A. Cziraki, B. Fogarassy, and I. Gerocs: in Light Materials for Transportation Systems, N.J. Kim, ed., TMS, Kyongju, Korea, 1993, pp. 391–405.Google Scholar
  58. 58.
    A.J. Morris, R.F. Robey, P.D. Couch, and E. Delos Rios: Mater. Sci. Forum, 1997, vol. 242, pp. 181–86.Google Scholar
  59. 59.
    M. Warmuzek: Mater. Sci. Forum, 1996, vols. 215–216, pp. 243–50.Google Scholar
  60. 60.
    D.J. Strawbridge, W. Hume-Rothery, and A.T. Little: J. Inst. Met., 1948, vol. 74, pp. 191–225.Google Scholar
  61. 61.
    E.A. Starke: Mater. Sci. Eng., 1977, vol. 29, pp. 99–115.CrossRefGoogle Scholar
  62. 62.
    E.L. Colvin: Personal communication, Aluminum Company of America, Alcoa Center, PA, 1997.Google Scholar
  63. 63.
    R.D. Kane: “Making and Using Precrack Double Bean Stress Corrosion Specimens,” Report ASTM G01.06, ASTM, Houston, TX, 1998.Google Scholar
  64. 64.
    M.S. Domack: in Environmentally Assisted Cracking: Science & Engineering, “ASTM STP 1049,” W.B. Lisagor, T.W. Crooker, and B.N. Leis, eds., ASTM, Philadelphia, PA, 1990, pp. 391–409.Google Scholar
  65. 65.
    M.O. Speidel: in Theory of Stress Corrosion Cracking in Alloys, J.C. Scully, ed., NATO, Brussels, Belgium, 1971, pp. 289–344.Google Scholar
  66. 66.
    G.M. Scamans: Metall. Trans. A, 1980, vol. 11A, pp. 846–50.Google Scholar
  67. 67.
    K.N. Akhurst and T.J. Baker: Metall. Trans. A, 1981, vol. 12A, pp. 1059–70.Google Scholar
  68. 68.
    P.N. Anyalebechi: Scripta Metall., 1995, vol. 33 (8), pp. 1209–16.CrossRefGoogle Scholar
  69. 69.
    P.N. Anyalebechi: Scripta Mater., 1996, vol. 34 (4), pp. 513–17.CrossRefGoogle Scholar
  70. 70.
    F. Sarioglu, P. Abachi, and M. Doruk: J. Mater. Sci., 1993, vol. 28, pp. 1430–34.CrossRefGoogle Scholar
  71. 71.
    G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1986, p. 751.Google Scholar
  72. 72.
    P. Shewmon: Diffusion in Solids, TMS, Warrendale, PA, 1989, p. 246.Google Scholar
  73. 73.
    L.M. Young and R.P. Gangloff: unpublished research, The University of Virginia, Charlottesville, VA, 1997.Google Scholar
  74. 74.
    H. Vogt and M.O. Speidel: Corr. Sci., 1998, vol. 40 (2–3), pp. 251–70.CrossRefGoogle Scholar
  75. 75.
    S.M. Lee, S.I. Pyun, and Y.G. Chun: Metall. Trans. A, 1991, vol. 22A, pp. 2407–14.Google Scholar
  76. 76.
    J.R. Scully, G.A. Young, Jr., and S.W. Smith: Materials Science Forum, 2000, 331–337, pp. 1583–1600.CrossRefGoogle Scholar
  77. 77.
    A. Turnbull: in Environmentally Assisted Cracking, ASTM STP 1401, R.D. Kane, ed., ASTM, Philadelphia, PA, 2000, p. 23.Google Scholar
  78. 78.
    W.W. Gerberich, T. Livine, X.-F. Chen, and M. Kaczoroski: Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.Google Scholar
  79. 79.
    P.S. Lam, R.L. Sindelar, and H.B. Peacock: “Vapor Corrosion of Al Cladding Alloys and Al-Uranium Fuel Materials in Storage Environments,” Report No. WSRC-TR-97-0120, Westinghouse Savannah River, SC, 1997.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • George A. YoungJr.
    • 1
  • John R. Scully
    • 2
  1. 1.Lockheed Martin CorporationSchenectady
  2. 2.the Department of Materials Science and Engineering, Center for Electrochemical Science and EngineeringUniversity of VirginiaCharlottesville

Personalised recommendations