Advertisement

Metallurgical and Materials Transactions A

, Volume 33, Issue 6, pp 1617–1626 | Cite as

Comprehensive microstructural characterization in modified 9Cr-1Mo ferritic steel by ultrasonic measurements

  • Anish Kumar
  • K. Laha
  • T. Jayakumar
  • K. Bhanu Sankaro Rao
  • Baldev Raj
Article

Abstract

Modified 9Cr-1Mo ferritic steel (T91/P91) has been subjected to a series of heat treatments consisting of soaking for 5 minutes at the selected temperatures, starting from the α-phase region (1073 K) to the γ + δ-phase region (1623 K), followed by oil quenching. Hardness measurements, microstructural features, and grain-size measurements by the linear-intercept method have been used for correlating them with the ultrasonic parameters. Ultrasonic velocity and attenuation measurements, and spectral analysis of the first backwall echo have been used for characterization of the microstructures obtained by various heat treatments. As the soaking temperature increased above Ac 1, the ultrasonic velocity decreased because of the increase in the volume fraction of martensite in the structure. There were sharp changes in the ultrasonic velocities corresponding to the two critical temperatures, Ac 1 and Ac 3. Ultrasonic longitudinal- and shear-wave velocities were found to be useful in identifying the Ac 1 and Ac 3 temperatures and for the determination of hardness in the intercritical region. However, ultrasonic attenuation and spectral analysis of the first backwall echo were found to be useful to characterize the variation in the prior-austenitic grain size and formation of δ ferrite above the Ac 4 temperature. The scattering coefficients have been experimentally determined for various microstructures and compared with the theoretically calculated value of the scattering coefficients for iron reported in literature.

Keywords

Ferrite Martensite Material Transaction Ultrasonic Velocity Ultrasonic Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.K. Shah, Anish Kumar, M. Bandyopadhyay, A.K. Bandyopadhyay, and P.G. Kulkarni: INSIGHT, 1999, vol. 41 (11), pp. 707–09.Google Scholar
  2. 2.
    R.B. Mignogma, J.C. Duke, Jr., and R.E. Green: Mater. Eval., 1980, vol. 38, pp. 37–42.Google Scholar
  3. 3.
    N. Grayeli and J.C. Shyne: Review of Progress in Quantitative NDE, Plenum Press, NY, 1985, vol. 4b, pp. 927–37.Google Scholar
  4. 4.
    E.P. Papadakis: Metall. Trans., 1970, vol. 1, pp. 1053–57.Google Scholar
  5. 5.
    T. Jayakumar, H. Willems, and Baldev Raj: Trans. Ind. Inst. Met., 1991, vol. 44, pp. 327–38.Google Scholar
  6. 6.
    M. Rosen, L. Ives, S. Ridder, F. Biancaniello, and R. Mehrabian: Mater. Sci. Eng., 1985, vol. 74, pp. 1–11.CrossRefGoogle Scholar
  7. 7.
    R. Klinman and E.T. Stephencon: Mater. Eval., 1981, vol. 39, pp. 1116–20.Google Scholar
  8. 8.
    A. Vary: Mater. Eval., 1988, vol. 46, pp. 642–49.Google Scholar
  9. 9.
    Ulf Stigh: Eng. Fract. Mech., 1987, vol. 28, pp. 1–12.CrossRefGoogle Scholar
  10. 10.
    T.R.G. Kutty, K.N. Cndrasekharan, J.P. Pannakal, S.K. Ghoshal, and P.K. De: NDT Int., 1987, vol. 20, pp. 359–61.CrossRefGoogle Scholar
  11. 11.
    D.W. Fitting and L. Adler: Ultrasonic Spectral Analysis for NDE, Plenum Press, New York, NY, 1981.Google Scholar
  12. 12.
    Anish Kumar, T. Jayakumar, P. Palanichamy, and Baldev Raj: Scripta Mater., 1999, vol. 40, pp. 333–40.CrossRefGoogle Scholar
  13. 13.
    K. Honjoh: Jpn. J. Appl. Phys., 1994, vol. 33, pp. 1554–59.CrossRefGoogle Scholar
  14. 14.
    O.R. Gericke: in The Future of Ultrasonic Spectroscopy, P.M. Reynolds, ed., British Non-Ferrous Metals Research Association, London, 1971.Google Scholar
  15. 15.
    E.P. Papadakis: J. Testing Eval., 1984, vol. 12, pp. 273–75.CrossRefGoogle Scholar
  16. 16.
    Marc Dubois, A. Moreau, M. Militzerand, and J.F. Bussiere: Scripta Mater., 1999, vol. 39, pp. 333–40.Google Scholar
  17. 17.
    Annual Book of ASTM Standards, ASTM E112-88, ASTM, Philadelphia, PA, 1992, vol. 3. 01, pp. 294–326.Google Scholar
  18. 18.
    B.P.C. Rao, T. Jayakumar, D.K. Bhattacharya, and Baldev Raj: J. Pure Appl. Ultrasonics, 1993, vol. 25, pp. 53–59.Google Scholar
  19. 19.
    T. Jayakumar: Ph.D. Thesis, University of Saarland, Saarbruecken, Germany, 1997.Google Scholar
  20. 20.
    J. Orr, D. Burton, and C. Rasche: The Manufacture and Properties of Steel 91 for the Power Plant and Process Industries, Nov. 5, 1992, VDEh, Dusseldorf.Google Scholar
  21. 21.
    P.J. Alberry and W.K.C. Jones: Met. Technol., 1977, vol. 4, pp. 557–63.Google Scholar
  22. 22.
    V.V. Muravev: Defectoscopiya, 1989, vol. 2, pp. 66–68.Google Scholar
  23. 23.
    B.J. Elkind, M. Rosen, and H.N.G. Wadley: Conf. Proc. Intelligent Processing of Materials and Advanced Sensors, Orlando, FL, Oct. 5–9, 1986, TMS-AIME, Warrendale, PA, 1987, pp. 49–60.Google Scholar
  24. 24.
    G. Benkisser: Metall. Werkstofftech., 1985, pp. 220–37 (German).Google Scholar
  25. 25.
    E.M. Papadakis: J. Appl. Phys., 1964, vol. 35 (5), pp. 1474–80.CrossRefGoogle Scholar
  26. 26.
    H.M. Ledbetter: Materials at Lower Temperature, R.P. Reed and A.F. Clark, eds., ASM, Metals Park, OH, 1983, pp. 1–45.Google Scholar
  27. 27.
    G.R. Spiech, A.J. Schwoeble, and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 2031–37.Google Scholar
  28. 28.
    W. Koester and H. Franz: Metall. Rev., 1961, vol. 6 (21), p. 1–54.Google Scholar
  29. 29.
    P. Palanichamy, A. Josheph, T. Jayakumar, and Baldev Raj: NDTE Int., 1995, vol. 28, pp. 179–85.CrossRefGoogle Scholar
  30. 30.
    E.P. Papadakis: Physical Acoustics: Principles and Methods, 4b, Academic Press, New York, NY, 1981, pp. 269–370.Google Scholar
  31. 31.
    E.P. Papadakis: J. Acoust. Soc. Am., 1965, vol. 37 (4), pp. 703–10.CrossRefGoogle Scholar
  32. 32.
    W.P. Mason and McSkimin: J. Appl. Phys., 1948, vol. 19, pp. 940–46.CrossRefGoogle Scholar
  33. 33.
    W.A. Simpson Jr.: J. Acoust. Soc. Am., 1974, vol. 56, p. 1776.CrossRefGoogle Scholar
  34. 34.
    R. Klinman, G.R. Webster, F.J. Marsh, and E.T. Stephenson: Mater. Eval., 1980, vol. 38, pp. 26–31.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Anish Kumar
    • 1
  • K. Laha
    • 1
  • T. Jayakumar
    • 1
  • K. Bhanu Sankaro Rao
    • 2
  • Baldev Raj
    • 3
  1. 1.NDT&E Sectionthe Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Mechanical Metallurgy Divisionthe Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Metallurgy, Chemical and Reprocessing Groupthe Indira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations