Advertisement

Metallurgical and Materials Transactions A

, Volume 33, Issue 3, pp 851–858 | Cite as

Transmission electron microscopy investigation of 〈c+a〉 dislocations in Mg and α-solid solution Mg-Li alloys

  • S. R. Agnew
  • J. A. Horton
  • M. H. Yoo
Article

Abstract

The ductility of Mg alloys is limited due to a shortage of independent slip systems. In particular, c-axis compression cannot be accommodated by any of the easy slip or twinning modes. Basal-textured samples of pure Mg and Mg-15 at. pct Li were examined for the presence of 〈c+a〉 dislocations by post-mortem transmission electron microscopy (TEM) after a small deformation, which forced the majority of grains to compress nearly parallel to their c-axes. A higher density and more uniform distribution of 〈c+a〉 dislocations is found in the Li-containing alloy. Because the 1/3〈11\(\bar 2\)3〉 {11\(\overline {22} \)} pyramidal slip mode offers five independent slip systems, it provides a satisfying explanation for the enhanced ductility of α-solid solution Mg-Li alloys as compared to pure Mg. The issue of 〈c+a〉 dislocation dissociation and decomposition remains open from an experimental point of view. Theoretically, the most feasible configuration is a collinear dissociation into two 1/2〈c+a〉 partial dislocations, with an intervening stacking fault on the glide plane. It is speculated that Li additions may lower the fault’s energy and, thereby, increase the stability of this glissile configuration.

Keywords

Material Transaction Partial Dislocation Critical Resolve Shear Stress Basal Slip Prismatic Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18.Google Scholar
  2. 2.
    U.F. Kocks and D.G. Westlake: Trans. TMS-AIME, 1967, vol. 239, pp. 1107–09.Google Scholar
  3. 3.
    R.A. Lebensohn and C.N. Tomé: Acta Metall., 1993, vol. 41, pp. 2611–24.CrossRefGoogle Scholar
  4. 4.
    S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRefGoogle Scholar
  5. 5.
    F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. ASM, 1956, vol. 48, p. 986.Google Scholar
  6. 6.
    G.V. Raynor: The Physical Metallurgy of Magnesium and Its Alloys, Pergamon, New York, NY, 1959, pp. 254–83.Google Scholar
  7. 7.
    C.S. Roberts: Magnesium and Its Alloys, John Wiley, New York, NY, 1960.Google Scholar
  8. 8.
    E.F. Emley: Principles of Magnesium Metallurgy, Pergamon, New York, NY, 1966, p. 513.Google Scholar
  9. 9.
    P. Metenier, G. Gonzalez-Doncel, O.A. Ruano, J. Wolfenstine, and O.D. Sherby: Mater. Sci. Eng., 1990, vol. A125, pp. 195–202.Google Scholar
  10. 10.
    H. Takuda, S. Kikuchi, and K. Kubota: in Magnesium Alloys and Their Applications, K.U. Kaine, ed., Wiley-VCH, Frankfurt, 2000, pp. 285–90.CrossRefGoogle Scholar
  11. 11.
    N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota, and K. Higashi: Scripta Mater., 1997, vol. 36, pp. 551–55.CrossRefGoogle Scholar
  12. 12.
    F. Aldinger: in The Science and Technology of Beryllium, D. Webster and G.J. London eds., Plenum Press, New York, NY, 1979, vol. 1, pp. 7–109.Google Scholar
  13. 13.
    C. Jaschik, H. Haferkamp, and M. Niemeyer: in Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Frankfurt, 2000, pp. 41–46.CrossRefGoogle Scholar
  14. 14.
    A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, p. 1447.CrossRefGoogle Scholar
  15. 15.
    A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, p. 1455.CrossRefGoogle Scholar
  16. 16.
    A. Couret and D. Caillard: J. Phys. III, 1991, vol. 1, pp. 885–907.CrossRefGoogle Scholar
  17. 17.
    P. Ward Flynn, J. Mote, and J. E. Dorn: Trans. TMS-AIME, 1961, vol. 221, pp. 1148–54.Google Scholar
  18. 18.
    R.M. Quimby, J.D. Mote, and J.E. Dorn: Trans. ASM, 1962, vol. 55, pp. 149–57.Google Scholar
  19. 19.
    B.C. Wonsiewicz and W.A. Backofen: Trans. AIME, 1967, vol. 239, pp. 1422–31.Google Scholar
  20. 20.
    H. Yoshinaga and R. Horiuchi: Trans. JIM, 1963, vol. 4(1).Google Scholar
  21. 21.
    W.H. Hartt, and R.E. Reed-Hill: Trans. TMS-AIME, 1967, vol. 242, p. 1127.Google Scholar
  22. 22.
    J.F. Stohr and J.P. Poirier: Phil. Mag., 1972, vol. 25, p. 1313.Google Scholar
  23. 23.
    T. Obara, H. Yoshinaga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845.CrossRefGoogle Scholar
  24. 24.
    S. Morozumi, M. Kikuchi, and H. Yoshinaga: Trans. JIM, 1976, vol. 17, pp. 158–64.Google Scholar
  25. 25.
    S. Ando and H. Tonda: Mater. Trans. JIM, 2000, vol. 41, pp. 1188–91.Google Scholar
  26. 26.
    M.A. Meyers: in Mechanics and Materials, M.A. Meyers, R.W. Armstrong, and H.O.K. Kirchner, John Wiley & Sons, New York, NY, 1999, p. 532.Google Scholar
  27. 27.
    F.C. Frank and J.F. Nicholas: Phil. Mag., 1953, vol. 44, p. 1213.Google Scholar
  28. 28.
    H.S. Rosenbaum: in Deformation Twinning, R.E. Reed-Hill, J.P. Hirth, and H.C. Rogers, eds., TMS-AIME Conf. Vol. 25, Gordon and Breach, New York, NY, 1964, p. 43.Google Scholar
  29. 29.
    Y. Minonishi, S. Ishioka, M. Koiwa, and S. Morozumi: Phil. Mag. A, 1982, vol. 45, p. 835.Google Scholar
  30. 30.
    M.H. Liang and D.J. Bacon: Phil. Mag. A 1986, vol. 53, p. 181.Google Scholar
  31. 31.
    J.R. Morris, J. Scharff, K.M. Ho, D.E. Turner, Y.Y. Ye, and M.H. Yoo: Phil. Mag. A, 1997, vol. 76, p. 1065.Google Scholar
  32. 32.
    J.R. Morris, K.M. Ho, K.Y. Chen, G. Rengarajan, and M.H. Yoo: Model. Simul. Mat. Sci. Eng., 2000, vol. 8, p. 25.CrossRefGoogle Scholar
  33. 33.
    M.H. Loretto and R.E. Smallmam: Defect Analysis in Electron Microscopy, Chapman and Hall, London, 1975, pp. 63–66.Google Scholar
  34. 34.
    P.R. Okamoto and G. Thomas: Phys. Status Solidi, 1968, vol. 25, p. 81.Google Scholar
  35. 35.
    N.E. Paton and W.A. Backofen: Metall. Trans., 1970, vol. 1, pp. 2839–47.Google Scholar
  36. 36.
    P.B. Legrand: Phil. Mag. B, 1984, vol. 49, pp. 171–84Google Scholar
  37. 37.
    N. Chetty and M. Weinert: Phys. Rev. B, 1997, vol. 56, pp. 10844–10850.CrossRefGoogle Scholar
  38. 38.
    J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley & Sons, New York, NY, 1982, p. 354.Google Scholar
  39. 39.
    W.E. Faust et al.: Phys. Rev. B, 1969, vol. 183, p. 609.CrossRefGoogle Scholar
  40. 40.
    V.V. Damiano, G.J. London, and H. Conrad: Trans. AIME, 1968, vol. 242, p. 987.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • S. R. Agnew
    • 1
  • J. A. Horton
    • 2
  • M. H. Yoo
    • 2
  1. 1.the Department of Materials Science and EngineeringUniversity of VirginiaCharlottesville
  2. 2.the Metals and Ceramics DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations