Recent metallic materials for biomedical applications

  • Mitsuo Niinomi
Article

Abstract

Metallic biomaterials are mainly used for replacing failed hard tissue. The main metallic biomaterials are stainless steels, Co-based alloys, and titanium and its alloys. Recently, titanium alloys are getting much attention for biomaterials. The various kinds of new high strength α+β and low-modulus β-type titanium alloys composed of nontoxic elements, such as Nb, Ta, Zr, etc., are developed for biomedical applications because of the toxicity of alloying elements and lack of mechanical biocompatibility of conventional titanium alloys, such as Ti-6Al-4V. Recent research and development in other metallic alloys, such as stainless steels and Co-based alloys, also will be discussed.

References

  1. 1.
    J.B. Park: in The Biomedical Engineering Handbook Volume I, J.D. Bronzino, ed., CRC Press LLC, Boca Raton, FL, 2000, pp. IV-1–IV-8.Google Scholar
  2. 2.
    Takao: J. Jpn. Soc. Biomater., 1989, vol. 7, pp. 19–23.Google Scholar
  3. 3.
    F.D. Whitcher: Comput. Struct., 1997, vol. 64, pp. 1005–11.CrossRefGoogle Scholar
  4. 4.
    M. Niinomi: Mater. Sci. Eng., 1998, vol. A243, pp. 231–36.Google Scholar
  5. 5.
    R. Zwicker, K. Buheler, R. Mueller, H. Beck, and H.J. Schmid: in Titanium ′80: Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, vol. 2, pp. 505–14.Google Scholar
  6. 6.
    M. Semlitsch, F. Staub, and H. Webber: Biomed. Technol., 1985, vol. 30, pp. 334–39.CrossRefGoogle Scholar
  7. 7.
    U. Zwicker: Z. Metallkd., 1986, vol. 77, pp. 714–20.Google Scholar
  8. 8.
    M. Semlitsch: Titan, 1987, vol. 2, pp. 721–40.Google Scholar
  9. 9.
    Implant of Surgery—Metallic Materials—Part 10: Wrought Titanium 5-Aluminum 2.5-Iron Alloy, ISO 5832-10, Genève, Switzerland, 1996.Google Scholar
  10. 10.
    Standard Specification for Wrought Titanium 6Al 7Nb Alloy for Surgical Implants, ASTM Designation F1295-92, ASTM, Philadelphia, PA, 1994, pp. 687–89.Google Scholar
  11. 11.
    Implant for Surgery—Metallic Materials—Part II: Wrought Titanium 6-Aluminum 7-Nio bium Alloy, ISO 5832-11, Genève, Switzerland, 1994.Google Scholar
  12. 12.
    Military Specification, MIL-T-9046J, Code A-3, 1991.Google Scholar
  13. 13.
    Y. Sasaki, K. Doi, and T. Matsushita: Kinzoku, 1996, vol. 66, pp. 812–17.Google Scholar
  14. 14.
    Y. Okazaki, Y. Ito, A. Ito, and T. Tateishi: Medical Applications of Titanium and Its Alloys, S.A. Brown and J.E. Lemons, eds., ASTM STP 1272, ASTM, Philadelphia, PA, 1996, pp. 45–59.Google Scholar
  15. 15.
    J.E. Lemons: in Perspectives on Biomaterials, O.C.C. Lin and E.Y.S. Chao, eds., Elsevier, New York, NY, 1986, pp. 1–13.Google Scholar
  16. 16.
    A.K. Mishra, J.A. Davidson, P. Kovacs, and R.A. Poggie: in Beta Titanium in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., TMS, Warrendale, PA, 1993, pp. 61–72.Google Scholar
  17. 17.
    K. Wang, L. Gustavson, and J. Dumbleton: in Beta Titanium in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., 1993, pp. 49–60.Google Scholar
  18. 18.
    L.D. Zardiackas, D.W. Mitchell, and J.A. Diesegi: in Medical Applications of Titanium and Its Alloys, S.A. Brown and J.E. Lemons, eds., ASTM STP 1272, ASTM, Philadelphia, PA, 1996, pp. 60–74.Google Scholar
  19. 19.
    K. Wang: Mater. Sci. Eng. A, 1996, vol. A213, pp. 134–37.Google Scholar
  20. 20.
    T. Nishimura: Metallurgy and Technology Practical Titanium Alloys, S. Fujishiro, D. Eylon, and T. Kishi, eds., TMS, Warrendale, PA, 1994, pp. 3–8.Google Scholar
  21. 21.
    Y. Nakayama, T. Yamamuro, Y. Kotoura, and M. Oka: Proc. 3rd World Biomaterials Congr., Koto, Japan, Apr. 21–25, 1988, p. 202.Google Scholar
  22. 22.
    S.K. Bhambri, R.H. Shetty, and L.N. Gilbertson: in Medical Applications of Titanium and Its Alloys, S.A. Brown and J.E. Lemons, eds., ASTM STP 1272, ASTM, Philadelphia, PA, 1996, pp. 88–95.Google Scholar
  23. 23.
    T. Ahmed, M. Long, J. Slivestri, C. Ruiz, and H.J. Rack: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Metals, London, 1996, vol. II, pp. 1760–67.Google Scholar
  24. 24.
    D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. A243, pp. 244–49.Google Scholar
  25. 25.
    C.R. Ortiz, R. Villa, G. Gonzalez, E. Trillo, S.W. Stafford, and L.E. Murr: in Structural Biomaterials for the 21st Century, M. Niinomi, T. Okabe, E.M. Taleff, D.R. Lesure, and H.E. Lippard, eds., TMS, Warrendale, PA, 2001, pp. 35–42.Google Scholar
  26. 26.
    Standard Specification for Wrought Titanium—13 Niobium—13 Zirconium Alloy for Surgical implant Applications, ASTM Designation F1713-96, ASTM, Philadelphia, PA, 2000, pp. 1071–74.Google Scholar
  27. 27.
    Standard Specification for Wrought Titanium—21 Molybdenum—6 Zirconium—2 Iron Alloy for Surgical implant Applications, ASTM Designation F1813-97, ASTM, Philadelphia, PA, 2000, pp. 1250–51.Google Scholar
  28. 28.
    M. Niinomi: JOM, 1999, vol. 51, pp. 32–34.Google Scholar
  29. 29.
    D. Kuroda, M. Niinomi, H. Fukui, A. Suzuki, and J. Hasegawa: Tetsuto-Hasgané, 2000, vol. 86, pp. 610–16.Google Scholar
  30. 30.
    T. Kasuga, T. Mizuno, M. Watanabe, M. Nogami, and M. Niinomi: Biomaterials, 2000, vol. 22, pp. 577–82.CrossRefGoogle Scholar
  31. 31.
    A. Morita, H. Fukui, H. Tadano, S. Hayashi, J. Hasegawa, and M. Niinomi: Mater. Sci. Eng. A, 2000, vol. A280, pp. 208–13.Google Scholar
  32. 32.
    H. Fukui, T. Kunii, Y. Fujishiro, A. Morita, M. Niinomi, A. Yamada, and J. Hasegawa: J. Jpn. Soc. Dental Mater. Dev., 2000, vol. 19, pp. 49–55.Google Scholar
  33. 33.
    Y. Okazaki, Y. Ito, K. Kyo, and T. Tateishi: Mater. Sci. Eng. A, 1996, vol. A213, pp. 138–47.Google Scholar
  34. 34.
    H. Kawahara, A. Yamaguchi, and M. Nakamura: Int. Dental J., 1968, vol. 18, pp. 443–67.Google Scholar
  35. 35.
    S.G. Steinemann: in Evaluation of Biomaterials, G.D. Winter, J.L. Leray, and K. de Groot, eds., John Wiley & Sons Ltd., New York, NY, 1980, pp. 1–34.Google Scholar
  36. 36.
    P.J. Uggowitzer, W.-F. Bähre, and M.O. Speidel: Adv. Powder Metall. Part Mater., 1997, vol. 3, pp. 18.113–18.121.Google Scholar
  37. 37.
    M. Niinomi: Function Mater., 2000, vol. 20, pp. 36–44.Google Scholar
  38. 38.
    F.X. Gil, J.M. Manero, and J.A. Planell: J. Mater. Sci.: Mater. Med., 1996, vol. 7, pp. 403–06.CrossRefGoogle Scholar
  39. 39.
    K. Nitta, S. Watanabe, N. Masahashi, H. Hosoda, and S. Hanada: Structural Biomaterials for the 21st Century, M. Niinomi, T. Okabe, E.M. Taleff, D.R. Lesure, and H.E. Lippard, eds., TMS, Warrendale, PA, 2001, pp. 25–34.Google Scholar
  40. 40.
    K. Majima, H. Nagai, E. Tsuji, and H. Oonishi: J. Jpn. Soc. Biomater., 1992, vol. 10, pp. 3–10.Google Scholar
  41. 41.
    H. Kyogoku, S. Komatsu, K. Shinohara, H. Jinushi, and T. Toda: J. Jpn. Soc. Powder Powder Metall., 1994, vol. 41, pp. 1075–79.Google Scholar
  42. 42.
    S. Yoshitani, M. Niinomi, D. Kuroda, K. Fukunaga, T. Saito, and T. Furuta: Proc. Powder Metallurgy World Congr. & Exh. 2000, Kyoto, Japan, Nov. 12–16, 2000, to be published.Google Scholar
  43. 43.
    O. Okuno: J. Jpn. Soc. Biomater., 1996, vol. 14, pp. 267–73.Google Scholar
  44. 44.
    E. Kobayashi, H. Doi, M. Takahashi, T. Nakano, T. Yoneyama, and H. Hamanaka: J. Jpn. Soc. Biomater., 1995, vol. 14, pp. 406–13.Google Scholar
  45. 45.
    T. Akahori, M. Niinomi, R. Isohama, and A. Suzuki: Structural Biomaterials for the 21st Century, M. Niinomi, T. Okabe, E.M. Taleff, D.R. Lesure, and H.E. Lippard, eds., TMS, Warrendale, PA, 2001, pp. 91–98.Google Scholar
  46. 46.
    K. Kato, T. Izumi, I. Simano, T. Kikui, H. Okada, and K. Nagayama: J. Jpn. Soc. Dental Mater. Dev., 1997, vol. 16, Special Issue 30, p. 45.Google Scholar
  47. 47.
    H. Doi, T. Yoneyama, E. Kobayashi, and H. Hamanaka: J. Jpn. Soc. Dental Mater. Dev., 1998, vol. 17, pp. 247–52.Google Scholar
  48. 48.
    E. Kobayashi, H. Doi, T. Yoneyama, H. Hamanaka, S. Matsumoto, and K. Kudaka: J. Jpn. Soc. Dental Mater. Dev., 1995, vol. 4, pp. 321–28.Google Scholar
  49. 49.
    D. Eylon, J.R. Newman, and J.K. Thorne: Metals Handbook, 10th ed., L.A. Abel, R.T. Kiepura, P. Thomas, H.F. Lampman, and N.D. Wheaton, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 634–46.Google Scholar
  50. 50.
    S. Yoshitani, M. Niinomi, K. Fukunaga, H. Fukui, T. Takeuchi, and S. Katsura: CAMP-ISIJ, 2000, vol. 13, p. 1345.Google Scholar
  51. 51.
    R.M. Berlin, L.J. Gustavson, and K.K. Wang: in Cobalt-Base Alloys for Biomedical Applications, J.A. Disegi, R.L. Kennedy, and R. Pilliar, eds., ASTM STP 1365, ASTM, Werst Conshohocken, PA, 1999, pp. 62–70.Google Scholar
  52. 52.
    G. Berry, J.D. Bolton, J.B. Brown, and Sarah McQuaide: in Cobalt-Base Alloys for Biomedical Applications, J.A. Disegi, R.L. Kennedy, and R. Pilliar, eds., ASTM STP 1365, ASTM, Werst Conshohocken, PA, 1999, pp. 11–31.Google Scholar
  53. 53.
    A.J.S. Garcia, A.M. Medrano, and A.S. Rodriguez: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1177–84.CrossRefGoogle Scholar
  54. 54.
    P. Huang and H. Lopez: Mater. Sci. Technol., 1999, vol. 15, pp. 157–64.Google Scholar
  55. 55.
    R.M. Berlin and L.J. Gustavson: in Cobalt-Base Alloys for Biomedical Applications, J.A. Disegi, R.L. Kennedy, and R. Pilliar, eds., ASTM STP 1365, ASTM, Werst Conshohocken, PA, 1999, pp. 89–97.Google Scholar
  56. 56.
    L. Shi, D.O. Northwood, and Z. Cao: J. Mater. Sci., 1993, vol. 28, pp. 1312–16.CrossRefGoogle Scholar
  57. 57.
    R. Tandon: in Cobalt-Base Alloys for Biomedical Application, J.A. Disegi, R.L. Kennedy, and R. Pilliar, eds., ASTM STP 1365, ASTM, Werst Conshohocken, PA, 1999, pp. 3–10.Google Scholar
  58. 58.
    J. Pan, C. Karlen, and C. Ulfvin: Electrochemical Society Proc., 1999, vol. 98–17, pp. 383–94.Google Scholar
  59. 59.
    M.O. Speidel and P.J. Uggowitzer: High Manganese High Nitrogen Austenitic Stainless Steels, Proc. ASM Materials Week ’92, Chicago, IL, Nov. 2–5, 1992, ASM International Metals Park, OH, p. 135.Google Scholar
  60. 60.
    K. Endo, Y. Abiko, M. Suzuki, H. Oho, and T. Kaku: Zairyo-to-Kankyo, 1998, vol. 47, pp. 570–76.Google Scholar
  61. 61.
    R.S. Brown and R.C. Gebeau: 6th World Biomaterials Congr. Trans., Kamuela, Hawaii, May 15–20, 2000, p. 828.Google Scholar
  62. 62.
    Y. Iguchi: Bull. Iron Steel Inst. Jpn., 1999, vol. 4, pp. 9–12.Google Scholar
  63. 63.
    N. Zenbo and K. Esato: in Stent-Grafting and Aortic Diseases, K. Esato, S. Hoshino, S. Ishimaru, N. Matsunaga, and N. Zenpo, eds., Ishiyaku Publishers, Tokyo, 1999, pp. 10–15.Google Scholar
  64. 64.
    M. Papakyriacou, H. Mayer, C. Pypen, H. Plenk, Jr., and S. Stanzel-Tschegg: Int. J. Fatigue, 2000, vol. 22, pp. 873–86.CrossRefGoogle Scholar
  65. 65.
    S. Hiromoto, H. Numata, A.P. Tsai, K. Nakazawa, T. Hanawa, and M. Sumita: J. Jpn. Inst. Met., 1999, vol. 63, pp. 352–60.Google Scholar
  66. 66.
    N. Maruyama, K. Nakazawa, M. Sumita, and T. Hanawa: Proc. Ann. Meeting Japan Society of Mechanical Engineering, Aug. 1–4, 2000, Nagoya, pp. 433–34.Google Scholar
  67. 67.
    C.J. Gilbert, V. Schroder, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1739–53.CrossRefGoogle Scholar
  68. 68.
    K. Yokoyama, K. Hamada, and K. Asaoka: 6th World Biomaterials Congr. Trans., May 15–20, 2000, Kamuela, Hawaii, Society for Biomaterials, Minneapolis, MN, p. 1271.Google Scholar
  69. 69.
    J.A. Tesk, C.E. Johnson, D. Sktric, M.S. Tung, and S. Hsu: Cobalt Base Alloys for Biomedical Applications, J.A. Disegi, R.L. Kennedy, and Pilliar, eds., ASTM STP 1365, ASTM, Werst Conshohocken, PA, 1999, pp. 32–43.Google Scholar
  70. 70.
    M. Takaya, K. Hashimoto, and Y. Toda: J. Jpn. Inst. Light Met., 2000, vol. 50, pp. 343–47.CrossRefGoogle Scholar
  71. 71.
    Y. Al-Abdullat, H. Kuwahara, and S. Tsutsumi: J. Jpn. Dental Mater., 2000, vol. 19, Special Issue No. 35, p. 95.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Mitsuo Niinomi
    • 1
  1. 1.the Department of Production Systems EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations