Metallurgical and Materials Transactions A

, Volume 33, Issue 2, pp 213–218 | Cite as

Creep at very low rates

  • F. R. N. Nabarro
Article

Abstract

The creep rate in a land-based power station must be less than 10−11 s−1. At these low rates of deformation the transport of matter occurs by the migration of vacancies rather than by the glide of dislocations. A quantitative understanding of these diffusional processes is, therefore, important. First type of diffusional creep (Nabarro-Herring (N-H)): the sources and sinks of vacancies are grain boundaries. The vacancies may diffuse through the bulk of the grain or along the grain boundaries (Coble (C)). Second type (Harper-Dorn (H-D)): the vacancies diffuse from edge dislocations with their Burgers vectors parallel to the major tensile axis to those with Burgers vectors perpendicular to this axis. The coherence of the polycrystalline aggregate is maintained by sliding along the grain boundaries. The three mechanisms of vacancy migration, grain boundary sliding, and dislocation glide may all interact. The theories of N-H and C creep in pure metals are established and confirmed, but H-D creep and grain boundary sliding are less well understood.

Practical engineering materials are usually strengthened by precipitates that accumulate on grain boundaries and slow down creep in complicated ways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.R.N. Nabarro: Report of Conf. on Strength of Solids, Physics Society, London, 1948, p. 75.Google Scholar
  2. 2.
    C. Herring: J. Appl. Phys., 1950, vol. 21, p. 437.CrossRefGoogle Scholar
  3. 3.
    R.L. Coble: J. Appl. Phys., 1963, vol. 34, p. 1679.CrossRefGoogle Scholar
  4. 4.
    J.R. Spingarn and W.D. Nix: Acta Metall., 1979, vol. 27, p. 171.CrossRefGoogle Scholar
  5. 5.
    B. Burton: Diffusional Creep of Polycrystalline Materials, Trans Tech Publications, Aedermannsdorf, Switzerland, 1977.Google Scholar
  6. 6.
    I.M. Lifshitz: Sov. Phys. JETP, 1963, vol. 17, p. 909.Google Scholar
  7. 7.
    W. Beeré: Met. Sci., 1976, vol. 10, p. 133.CrossRefGoogle Scholar
  8. 8.
    W.D. Nix: Mater. Sci. Forum, 1981, vol. 4, p. 38.Google Scholar
  9. 9.
    J.H. Schneibel, R.L. Coble, and R.M. Cannon: Acta Metall., 1981, vol. 29, p. 1285.CrossRefGoogle Scholar
  10. 10.
    J.E. Harris, R.B. Jones, G.W. Greenwood, and M.J. Ward: J. Aust. Inst. Met., 1969, vol. 14, p. 154.Google Scholar
  11. 11.
    G.B. Gibbs: Mem. Sci. Rev. Met., 1965, vol. 62, p. 781.Google Scholar
  12. 12.
    B. Burton: Met. Sci. J., 1973, vol. 7, p. 1.CrossRefGoogle Scholar
  13. 13.
    B. Burton: Mater. Sci. Eng., 1973, vol. 11, p. 337.CrossRefGoogle Scholar
  14. 14.
    O.D. Sherby, O.A. Ruano, and J. Wadsworth: in Creep Behaviour of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K. Linga Murty, eds., TMS, Warrendale, PA, 1999, p. 397.Google Scholar
  15. 15.
    J. Wadsworth, O.A. Ruano, and O.D. Sherby: in Creep Behaviour of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K. Linga Murty, eds., TMS, Warrendale, PA, 1999, p. 425.Google Scholar
  16. 16.
    B. Wilshire: in Creep Behaviour of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K. Linga Murty, eds., TMS, Warrendale, PA, 1999, p. 451.Google Scholar
  17. 17.
    J.B. Bilde-Sørensen and D.A. Smith: Proc. 8th Int. Conf. Strength Metals and Alloys, P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds., Pergamon, New York, NY, 1988, p. 869.Google Scholar
  18. 18.
    J.B. Bilde-Sørensen and D.A. Smith: Scripta Metall. Mater., 1994, vol. 30, p. 383.CrossRefGoogle Scholar
  19. 19.
    F.R.N. Nabarro: in Creep Behaviour of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K. Linga Murty, eds., TMS, Warrendale, PA, 1999, p. 391.Google Scholar
  20. 20.
    R.L. Squires, R.T. Weiner, and M. Phillips: J. Nucl. Mater., 1963, vol. 8, p. 77.CrossRefGoogle Scholar
  21. 21.
    Anwar-ul Karim, D.L. Holt, and W.A. Backofen: Trans. TMS-AIME, 1969, vol. 245, p. 2421.Google Scholar
  22. 22.
    E.H. Aigeltinger and R.C. Gifkins: J. Mater. Sci., 1975, vol. 10, p. 1889.CrossRefGoogle Scholar
  23. 23.
    J. Bilde-Sørensen and P.A. Thorsen: in Boundaries and Interfaces in Materials, R.C. Pond, W.A.T. Clark, A.H. King, and D.B. Williams, eds., TMS, Warrendale, PA, 1998, p. 179.Google Scholar
  24. 24.
    M.F. Ashby: Scripta Metall., 1969, vol. 3, p. 837.CrossRefGoogle Scholar
  25. 25.
    H. Gleiter: Acta Metall., 1979, vol. 27, p. 187.CrossRefGoogle Scholar
  26. 26.
    K.R. McNee, G.W. Greenwood, and H. Jones: Scripta Mater., 2001, vol. 44, p. 351.CrossRefGoogle Scholar
  27. 27.
    K.R. McNee, H. Jones, and G.W. Greenwood: in Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., The Institute of Materials, London, 2001.Google Scholar
  28. 28.
    B. Burton and G.W. Greenwood: Met. Sci. J., 1970, vol. 4, p. 215.Google Scholar
  29. 29.
    B. Pines and F. Sirenko: Fiz. Metall. Metalloved., 1963, vol. 15, p. 584, reproduced in Ref. 30.Google Scholar
  30. 30.
    O.A. Ruano, J. Wadsworth, J. Wolfenstine, and O.S. Sherby: Mater. Sci. Eng., 1993, vol. A165, p. 133.Google Scholar
  31. 31.
    Y. Ogino: Scripta Mater., 2000, vol. 43, p. 149.CrossRefGoogle Scholar
  32. 32.
    P. Yavari, D.A. Miller, and T.G. Langdon: Acta Metall., 1982, vol. 30, p. 871.CrossRefGoogle Scholar
  33. 33.
    Mu Yeh Wu and O.D. Sherby: Acta Metall., 1984, vol. 32, p. 1561.CrossRefGoogle Scholar
  34. 34.
    W. Blum and W. Maier: Phys. Status Solidi (a), 1999, vol. 171, p. 467.CrossRefGoogle Scholar
  35. 35.
    K.R. McNee, H. Jones, and G.W. Greenwood: in Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., The Institute of Materials, London.Google Scholar
  36. 36.
    F.R.N. Nabarro: Acta Metall., 1989, vol. 37, p. 2217.CrossRefGoogle Scholar
  37. 37.
    J.N. Wang: Scripta Metall., 1993, vol. 29, p. 1505.CrossRefGoogle Scholar
  38. 38.
    J.N. Wang: Acta Mater., 1996, vol. 44, p. 855.CrossRefGoogle Scholar
  39. 39.
    J.N. Wang and T.G. Nieh: Acta Metall. Mater., 1995, vol. 43, p. 1415.CrossRefGoogle Scholar
  40. 40.
    F.A. Mohamed and T.J. Ginter: Acta Metall., 1982, vol. 30, p. 1869.CrossRefGoogle Scholar
  41. 41.
    B. Burton and G.W. Greenwood: Acta Metall., 1970, vol. 18, p. 1237.CrossRefGoogle Scholar
  42. 42.
    E.C. Muehleisen and W.D. Nix: Mater. Sci. Eng., 1972, vol. 10, 33.CrossRefGoogle Scholar
  43. 43.
    T.J. Ginter, P.K. Chaudhury, and F.A. Mohamed: Acta Mater., 2001, vol. 49, p. 263.CrossRefGoogle Scholar
  44. 44.
    J. Fiala, J. Novotny, and J. Čadek: Mater. Sci. Eng., 1983, vol. 60, p. 195.CrossRefGoogle Scholar
  45. 45.
    T.G. Langdon: Mater. Sci. Eng., 2000, vol. A283, p. 266.Google Scholar
  46. 46.
    J.N. Wang: Acta Mater., 2000, vol. 48, p. 1517.CrossRefGoogle Scholar
  47. 47.
    M.F. Ashby and R.A. Verall: Acta Metall., 1973, vol. 21, p. 149.CrossRefGoogle Scholar
  48. 48.
    A. Ball and M.M. Hutchison: Met. Sci. J., 1969, vol. 3, p. 1.CrossRefGoogle Scholar
  49. 49.
    A.K. Mukherjee: Mater. Sci. Eng., 1971, vol. 8, p. 83.CrossRefGoogle Scholar
  50. 50.
    R. Raj and M.F. Ashby: Metall. Trans., 1971, vol. 2, p. 1113.Google Scholar
  51. 51.
    J.G. Harper, L.A. Shepard, and J.E. Dorn: Acta Metall., 1958, vol. 6, p. 509.CrossRefGoogle Scholar
  52. 52.
    B.Z. Valiev and O.A. Kaibyshev: Phys. Status Solidi (a), 1977, vol. 44, p. 65.CrossRefGoogle Scholar
  53. 53.
    H. Lüthy, R.A. White, and O.D. Sherby: Mater. Sci. Eng., 1979, vol. 39, p. 211.CrossRefGoogle Scholar
  54. 54.
    J. Schiøtz, T. Vegge, F.D. di Tolla, and K.W. Jacobsen: Proc. 19th Risø Int. Symp. on Materials Science, J.V. Carstensen, T. Leffers, T. Lorentzen, O.B. Pedersen, B.F. Sørensen, and G. Winther, eds., Risø National Laboratory, Roskilde, Denmark, 1998, p. 133.Google Scholar
  55. 55.
    A.H. Chokshi: Scripta Metall., 1985, vol. 19, p. 529.CrossRefGoogle Scholar
  56. 56.
    J. Novotý, J. Fiala, and J. Čadek: Acta Metall., 1983, vol. 31, p. 1697.CrossRefGoogle Scholar
  57. 57.
    F.R.N. Nabarro: Phys. Solid State, 2000, vol. 42, p. 1417.CrossRefGoogle Scholar
  58. 58.
    J. Fiala and T.G. Langdon: Mater. Sci. Eng., 1992, vol. A151, p. 147.Google Scholar
  59. 59.
    J.N. Wang: Phil. Mag., 1995, vol. A71, p. 105.Google Scholar
  60. 60.
    B.P. Kashyap, A. Arieli, and A.K. Mukherjee: J. Mater. Sci., 1985, vol. 20, p. 2661.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • F. R. N. Nabarro
    • 1
    • 2
  1. 1.Materials Physics InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.the Division of Manufacturing and Materials TechnologyCSIRPretoriaSouth Africa

Personalised recommendations