Advertisement

Metallurgical and Materials Transactions A

, Volume 33, Issue 5, pp 1331–1349 | Cite as

Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels

  • P. Cizek
  • B. P. Wynne
  • C. H. J. Davies
  • B. C. Muddle
  • P. D. Hodgson
Article

Abstract

Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low- and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 °C/s to about 100 °C/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (>0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.

Keywords

Ferrite Austenite Material Transaction Bainite Bainitic Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.I. Garcia: Proc. Int. Conf. Microalloying ’95, The Iron and Steel Society, Warrendale, PA, 1995, pp. 365–75.Google Scholar
  2. 2.
    B.A. Graville: Proc. Int. Conf. Welding of HSLA Structure Steels, ASM, Metals Park, OH, 1978, pp. 85–101.Google Scholar
  3. 3.
    T. Araki: Proc. Int. Conf. HSLA Steels ’85, J.M. Gray et al., eds., ASM INTERNATIONAL, Metals Park, OH, 1986, pp. 259–71.Google Scholar
  4. 4.
    I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth and Company, London, 1988, pp. 1–248.Google Scholar
  5. 5.
    Y.E. Smith, A.P. Coldren, and R.L. Cryderman: Toward Improved Ductility and Toughness, Iron and Steel Institute of Japan, Tokyo, 1971, pp. 119–42.Google Scholar
  6. 6.
    B.P. Wynne, P. Cizek, C.H.J. Davies, B.C. Muddle, and P.D. Hodgson: Proc. Int. Conf. THERMEC ’97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, vol. 1, pp. 837–43.Google Scholar
  7. 7.
    Atlas for Bainitic Microstructures—Vol. 1, Continuous-Cooled Zw Microstructures of Low-Carbon Steels, T. Araki et al., eds., Iron and Steel Institute of Japan, Tokyo, 1992, pp. 4–5.Google Scholar
  8. 8.
    B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.Google Scholar
  9. 9.
    G. Krauss and S.W. Thompson: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.Google Scholar
  10. 10.
    H.K.D.H. Bhadeshia: Bainite in Steels, Transformations, Microstructure and Properties, The Institute of Materials, London, 1992, pp. 245–82.Google Scholar
  11. 11.
    Y. Ohmori, H. Ohtani, and T. Kunitake: Trans. Iron Steel Inst. Jpn., 1971, vol. 11, pp. 250–59.Google Scholar
  12. 12.
    J.R. Yang, C.Y. Huang, and S.C. Wang: Proc. Int. Symp. Low-Carbon Steels for the 90’s, R. Asfahani and G. Tither, eds., TMS, Warrendale, PA, 1993, pp. 293–301.Google Scholar
  13. 13.
    J.R. Yang, C.Y. Huang, and C.S. Chiou: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1013–19.Google Scholar
  14. 14.
    S. Yamamoto, H. Yokoyama, K. Yamada, and M. Niikura: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1020–26.Google Scholar
  15. 15.
    P.A. Manohar, T. Chandra, and C.R. Killmore: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1486–93.Google Scholar
  16. 16.
    H. Tamehiro, M. Murata, and R. Habu: Proc. Int. Conf. HSLA Steels ’85, J.M. Gray et al., eds., ASM INTERNATIONAL, 1986, pp. 325–33.Google Scholar
  17. 17.
    G. Spanos, H.S. Fang, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1381–90.Google Scholar
  18. 18.
    Ph. Maitrepierre, J. Rofes-Vernis, and D. Thivellier: Proc. Int. Symp. Boron in Steels, S.K. Banerji and J.E. Morral, eds., TMS-AIME, Warrendale, PA, 1980, pp. 1–18.Google Scholar
  19. 19.
    J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: in Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 82–125.Google Scholar
  20. 20.
    J.E. Morral and T.B. Cameron: Pron. Int. Symp. Boron in Steels, S.K. Banerji and J.E. Morral, eds., TMS-AIME, Warrendale, PA, 1980, pp. 19–32.Google Scholar
  21. 21.
    M. Enomoto, C.L. White, and H.I. Aaronson: Metall. Trans. A, 1988, vol. 19A, pp. 1807–18.Google Scholar
  22. 22.
    R.C. Sharma and G.R. Purdy: Metall. Trans., 1974, vol. 5, pp. 939–47.Google Scholar
  23. 23.
    M. Enomoto, N. Nojiri, and Y. Sato: Mater. Trans. JIM, 1994, vol. 35, pp. 859–67.Google Scholar
  24. 24.
    M. Enomoto and H.I. Aaronson: Metall. Trans. A, 1986, vol. 17A, pp. 1385–97.Google Scholar
  25. 25.
    W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1433–63.Google Scholar
  26. 26.
    J.K. Chen, R.A. Vandermeer, and W.T. Reynolds, Jr.: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1267–79.Google Scholar
  27. 27.
    H.I. Aaronson: Metall. Trans. A, 1993, vol. 24A, pp. 241–76.Google Scholar
  28. 28.
    W.T. Reynolds, Jr., H.I. Aaronson, and G. Spanos: Mater. Trans. JIM, 1991, vol. 32, pp. 737–46.Google Scholar
  29. 29.
    Y. Ohmori and T. Maki: Mater. Trans. JIM, 1991, vol. 32, pp. 631–41.Google Scholar
  30. 30.
    H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21A, pp. 767–97.Google Scholar
  31. 31.
    G.R. Speich, L.J. Cuddy, C.R. Gordon, and A.J. DeArdo: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1983, pp. 341–89.Google Scholar
  32. 32.
    E. Essadiqi and J.J. Jonas: Metall. Trans. A, 1988, vol. 19A, pp. 417–26.Google Scholar
  33. 33.
    I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth and Co., London, 1988, pp. 86–93.Google Scholar
  34. 34.
    P. Cizek, B.P. Wynne, B.C. Muddle, and P.D. Hodgson: Proc. Int. of Conf. THERMEC ’97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, vol. 1, pp. 709–15.Google Scholar
  35. 35.
    H. Inagaki: Trans. Iron Steel Inst. Jpn., 1983 vol. 23, pp. 1059–67.Google Scholar
  36. 36.
    P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 1116–28.Google Scholar
  37. 37.
    E.A. Wilson: Met. Sci., 1984, vol. 18, pp. 471–84.CrossRefGoogle Scholar
  38. 38.
    E.A. Wilson: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 615–30.Google Scholar
  39. 39.
    B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.CrossRefGoogle Scholar
  40. 40.
    S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–71.Google Scholar
  41. 41.
    R.D. Townsend and J.S. Kirkaldy: Trans. ASM, 1968, vol. 61, pp. 605–19.Google Scholar
  42. 42.
    G. Spanos and M.G. Hall: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1519–34.Google Scholar
  43. 43.
    C.A. Dube, H.I. Aaronson, and R.F. Mehl: Rev. Met., 1958, vol. 55, p. 201.Google Scholar
  44. 44.
    J.V. Bee and R.W.K. Honeycombe: Metall. Trans. A, 1978, vol. 9A, pp. 587–93.Google Scholar
  45. 45.
    S. Okaguchi, H. Ohtani, and Y. Ohmori: Mater. Trans. JIM, 1991, vol. 32, pp. 697–704.Google Scholar
  46. 46.
    G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3277–93.Google Scholar
  47. 47.
    F. Hongsheng, Z. Yankang, and B. Bingzhe: Proc. Int. Conf. HSLA Steels ’85, J.M. Gray et al., eds., ASM INTERNATIONAL, Metals Park, OH, 1986, pp. 359–67.Google Scholar
  48. 48.
    T. Araki, K. Shibata, and H. Nakajima: Proc. Int. Conf. ICOMAT ’92, C.M. Wayman and J. Perkins, eds., Monterey Institute for Advanced Studies, Monterey, CA, 1993, pp. 767–72.Google Scholar
  49. 49.
    K. Shibata and K. Asakura: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 982–91.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • P. Cizek
    • 1
  • B. P. Wynne
    • 2
  • C. H. J. Davies
    • 3
  • B. C. Muddle
    • 3
  • P. D. Hodgson
    • 4
  1. 1.Department of MaterialsUniversity of OxfordOxfordUnited Kingdom
  2. 2.Institute of Microstructural and Mechanical Process Engineering (IMMPETUS)University of SheffieldSheffieldUnited Kingdom
  3. 3.the School of Physics and Materials EngineeringMonash UniversityAustralia
  4. 4.the School of Engineering and TechnologyDeakin UniversityVictoriaAustralia

Personalised recommendations