Metallurgical and Materials Transactions A

, Volume 33, Issue 7, pp 1939–1947 | Cite as

Artificial neural network and finite element modeling of nanoindentation tests

  • Anastasia Muliana
  • Rami M. Haj-Ali
  • Rejanah Steward
  • Ashok Saxena


This study first presents two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element (FE) models of nanoindentation tests. Calculated load-displacement curves from the FE models are compared with the load-displacement curves from nanoindentation measurements on annealed copper. Numerical parametric studies are also performed to examine the effect of indenter geometry and the material’s stress-strain behavior on the load-displacement response. The 2-D and 3-D FE load-displacement curves compare well with the measured results on annealed copper. The second aspect of this study introduces a new modeling approach for indentation tests using artificial neural networks (ANN). In this approach, ANN models are generated to approximate the FE load-displacement curves for a wide range of material and geometric parameters. The ability of the ANN models to predict the indentation response is examined against other FE results not used as part of the training data. These models are shown to accurately predict the load-displacement behavior of a nonlinear homogeneous material as well as one with a hard film, such as an oxide film, on a relatively soft substrate. It is shown that the monotonic indentation load-displacement response during loading contains ample information for the ANN model to extract material flow properties of the indented material.


Material Transaction Artificial Neural Network Finite Element Model Artificial Neural Network Model Soft Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Prandtl: Goettinger Nachr, Math. Phys. Kl., 1920, pp. 74–85.Google Scholar
  2. 2.
    R. Hill, E.H. Lee, and S.J. Tupper: Proc. R. Soc. London, 1947, vol. A188, pp. 273–90.Google Scholar
  3. 3.
    A. Ishlinsky: J. Appl. Math. Mech., 1944, vol. 8, p. 201.Google Scholar
  4. 4.
    R.T. Shield: Proc. R. Soc. London, 1955, vol. A233, pp. 267–87.Google Scholar
  5. 5.
    D. Tabor: Rev. Phys. Technol., 1970, vol. 1, pp. 145–79.CrossRefGoogle Scholar
  6. 6.
    K.L. Johnson: J. Mech. Phys. Solids, 1970, vol. 18, pp. 115–26.CrossRefGoogle Scholar
  7. 7.
    A.K. Bhattacharya and W.D. Nix: Int. J. Solids Struct., 1998, vol. 24 (12), pp. 1287–98.CrossRefGoogle Scholar
  8. 8.
    A.K. Bhattacharya and W.D. Nix: Int. J. Solids Struct., 1991, vol. 27 (8), pp. 1047–58.CrossRefGoogle Scholar
  9. 9.
    H.F. Wang and H. Bangert: Mater. Sci. Eng., 1993, vol. A16, p. 343.Google Scholar
  10. 10.
    Y. Sun, T. Bell, and S. Zheng: Thin Solid Films, 1995, vol. 258, pp. 198–204.CrossRefGoogle Scholar
  11. 11.
    M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali: Thin Solid Films, 1998, vol. 333, pp. 278–86.CrossRefGoogle Scholar
  12. 12.
    M.C. Fivel, C.F. Robertson, G.R. Canova, and L. Boulanger: Acta Mater., 1998, vol. 46 (17), pp. 6783–94.CrossRefGoogle Scholar
  13. 13.
    J.A. Knapp and D.M. Follstaedt: Surface Coating Technol., 1998, vols. 103–104, pp. 268–75.CrossRefGoogle Scholar
  14. 14.
    J. Hertz, A. Krogh, and R.G. Palmer: Introduction to the Theory of Neural Computations, Addison-Wesley, Redwood City, CA, 1991.Google Scholar
  15. 15.
    H. Ritter, T. Martinez, and K. Schulten: Neural Computation and Self-Organizing Maps: An Introduction, Addison-Wesley, Redwood City, CA, 1991.Google Scholar
  16. 16.
    J. Ghaboussi, D.A. Pecknold, M.-F. Zhang, and R.M. Haj-Ali: Int. J. Num. Methods Eng., 1998, vol. 42, pp. 105–26.CrossRefGoogle Scholar
  17. 17.
    R.M. Haj-Ali, D.A. Pecknold, and J. Ghaboussi: Modeling and Simulation Based Engineering, Proc. Int. Conf. on Computational Engineering Science, ICES98, Atlanta, GA, Oct., S.N. Atluri and P.E. O’Donoghue, eds., Tech Science Press, Encino, CA, 1998, pp. 551–57.Google Scholar
  18. 18.
    R.M. Haj-Ali, K.E. Kurtis, and A.R. Sthapit: ACI Mater. J., 2001, vol. 98 (1), pp. 36–43.Google Scholar
  19. 19.
    J. Ghaboussi, J.H. Garrett, and X. Wu: Proc., NUMETA-90, Int. Conf. on Numerical Methods in Engineering: Theory and Applications, Swansea, England, vol. II, G.N. Pande and J. Middleton, eds., Elsevier Applied Sciences, Swansea, UK, January 7–11, 1990, pp. 701–17.Google Scholar
  20. 20.
    J. Ghaboussi, J.H. Garrett, and X. Wu: J. Eng. Mech. Div., ASCE, 1991, vol. 117 (1), pp. 132–53.Google Scholar
  21. 21.
    G. Ellis, C. Yao, R. Zhao, and D. Penumadu: J. Geotechn. Eng., ASCE, 1995, vol. 102, pp. 429–35.Google Scholar
  22. 22.
    R. Pidaparti and M. Palakal: AIAA J., 1993, vol. 31, pp. 1533–35.CrossRefGoogle Scholar
  23. 23.
    J.-W. Oh, I.-W. Lee, I.-T. Kim, and G.-W. Lee: ACI Mater. J., 1999, vol. 96 (1), pp. 61–67.Google Scholar
  24. 24.
    R.M. Haj-Ali, D.A. Pecknold, J. Ghaboussi, and G.Z. Voyiadjis: J. Eng. Mech. Div., ASCE, 2001, vol. 127 (7), pp. 730–38.CrossRefGoogle Scholar
  25. 25.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, p. 1564.Google Scholar
  26. 26.
    Hibbitt, Karlsson, & Sorensen, Inc., ABAQUS, Version 5.8, User’s Manual, Pawtucket, RI, 1998.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Anastasia Muliana
    • 1
  • Rami M. Haj-Ali
    • 1
  • Rejanah Steward
    • 3
  • Ashok Saxena
    • 2
  1. 1.the School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlanta
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyUSA
  3. 3.the Department of Material Science EngineeringUniversity of Tennessee-Knoxville

Personalised recommendations