Advertisement

Effects of microstructural morphology on quasi-static and dynamic deformation behavior of Ti-6Al-4V alloy

  • Dong-Geon Lee
  • Sangho Kim
  • Sunghak Lee
  • Chong Soo Lee
Article

Abstract

The effects of microstructural morphology on quasi-static and dynamic deformation behavior of a Ti-6Al-4V alloy were investigated in this study. Quasi-static and dynamic torsional tests were conducted using a torsional Kolsky bar for Widmanstätten, equiaxed, and bimodal microstructures, which were processed by different heat treatments, and then, the test data were analyzed in relation to microstructures, tensile properties, and fracture mode. Quasi-static torsional properties showed a tendency similar to tensile properties and ductile fracture occurred in all three microstructures. Under dynamic torsional loading, maximum shear stress of the three microstructures was higher and fracture shear strain was lower than those under quasi-static loading, but the overall tendency was similar. In the Widmanstätten and equiaxed microstructures, adiabatic shear bands were found in the deformed region of the fractured specimens. The possibility of the adiabatic shear band formation under dynamic loading was quantitatively analyzed, depending on how plastic deformation energy was distributed to either void initiation or adiabatic shear banding. It was found to be most likely in the equiaxed microstructure, whereas it was least likely in the bimodal microstructure.

Keywords

Martensite Material Transaction Adiabatic Shear Adiabatic Shear Band Equiaxed Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.A. Greenfield and H. Margolin: Metall. Trans., 1972, vol. 3, pp. 2649–59.Google Scholar
  2. 2.
    D. Eylon, J.A. Hall, C.M. Pierce, and D.L. Ruckel: Metall. Trans. A, 1976, vol. 7A, pp. 1817–26.Google Scholar
  3. 3.
    A. Gysler and G. Lutjering: Metall. Trans. A, 1982, vol. 13A, pp. 1435–43.Google Scholar
  4. 4.
    H. Margolin, J.C. Williams, J.C. Chesnutt, and G. Lutjering: Proc. 4th Int. Conf. on Ti, 1980, vol. 1, pp. 169–16.Google Scholar
  5. 5.
    W. Lee and C. Lin: Mater. Sci. Eng., 1998, vol. A241, pp. 48–59.Google Scholar
  6. 6.
    J.P. Hirth and F.H. Froes: Metall. Trans. A, 1977, vol. 8A, pp. 1165–76.Google Scholar
  7. 7.
    J.B. Borradaile and R.H. Jeal: Proc. 4th Int. Conf. on Ti, 1980, vol. 1, pp. 141–52.Google Scholar
  8. 8.
    C.C. Chen and J.E. Coyne: Metall. Trans. A, 1976, vol. 7A, pp. 1931–41.Google Scholar
  9. 9.
    P.S. Follansbee and G.T. Gray III: Metall. Trans. A, 1989, vol. 20A, pp. 863–74.Google Scholar
  10. 10.
    S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2173–79.Google Scholar
  11. 11.
    M. Mier and A.K. Mukherjee: Scripta Metall. Mater., 1990, vol. 24, pp. 331–36.CrossRefGoogle Scholar
  12. 12.
    S. Yadav and K.T. Ramesh: Mater. Sci. Eng., 1995, vol. A203, pp. 140–53.Google Scholar
  13. 13.
    K.A. Hartley, J. Duffy, and R.H. Hawley: J. Mech. Phys. Solids, 1987, vol. 35, pp. 283–301.CrossRefGoogle Scholar
  14. 14.
    D.-K. Kim, S.Y. Kang, S. Lee, and K.J. Lee: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 81–92.CrossRefGoogle Scholar
  15. 15.
    Metals Handbook, 9th ed., ASM, Metals Park, OH, 1990, vol. 4, pp. 763–74.Google Scholar
  16. 16.
    Metals Handbook, 9th ed., ASM, Metals Park, OH, 1990, vol. 8, pp. 218–24.Google Scholar
  17. 17.
    D.-K. Kim, S. Lee, and H.-S. Song: Met. Mater., 1999, vol. 5, pp. 211–23.CrossRefGoogle Scholar
  18. 18.
    S. Kim and S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1753–60.CrossRefGoogle Scholar
  19. 19.
    F.S. Lin, E.A. Starke, S.B. Chakrabortty, and A. Gysler: Metall. Trans. A, 1984, vol. 15A, pp. 1229–45.Google Scholar
  20. 20.
    H.A. Grebe, H.-R. Pak, and M.A. Meyers: Metall. Trans. A, 1985, vol. 16A, pp. 761–75.Google Scholar
  21. 21.
    S. Lee, K. Cho, C.S. Lee, and W.Y. Choo: Metall. Trans. A, 1993, vol. 24A, pp. 2217–24.Google Scholar
  22. 22.
    K. Cho, S. Lee, S.R. Nutt, and J. Duffy: Acta Metall., 1993, vol. 41, pp. 923–32.CrossRefGoogle Scholar
  23. 23.
    I.A. Akmoulin, M. Niinomi, and T. Kobayashi: Metall. Trans. A, 1994, vol. 25A, pp. 1655–66.Google Scholar
  24. 24.
    C.G. Lee and S. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 227–35.CrossRefGoogle Scholar
  25. 25.
    K. Cho, Y.C. Chi, and J. Duffy: Metall. Trans. A, 1990, vol. 21A, pp. 1161–75.Google Scholar
  26. 26.
    J. Wadsworth, I.G. Plamer, and D.D. Crooks: Scripta Metall., 1983, vol. 17, pp. 347–52.CrossRefGoogle Scholar
  27. 27.
    M.A. Meyers and C.L. Wittman: Metall. Trans. A, 1990, vol. 21A, pp. 3153–64.Google Scholar
  28. 28.
    C.L. Wittman, M.A. Meyers, and H.R. Pak: Metall. Trans. A, 1990, vol. 21A, pp. 707–16.Google Scholar
  29. 29.
    C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22–32.CrossRefGoogle Scholar
  30. 30.
    J.W. Hutchinson: Scripta Metall., 1984, vol. 18, pp. 421–22.CrossRefGoogle Scholar
  31. 31.
    J. Wadworth and A.R. Pelton: Scripta Metall., 1984, vol. 18, pp. 387–92.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2001

Authors and Affiliations

  • Dong-Geon Lee
    • 1
  • Sangho Kim
    • 1
  • Sunghak Lee
    • 1
  • Chong Soo Lee
    • 1
  1. 1.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea

Personalised recommendations