Advertisement

Metallurgical and Materials Transactions A

, Volume 32, Issue 6, pp 1527–1539 | Cite as

Stabilization mechanisms of retained austenite in transformation-induced plasticity steel

  • Jiajun Wang
  • Sybrand Van Der Zwaag
Article

Abstract

Three stabilization mechanisms—the shortage of nuclei, the partitioning of alloying elements, and the fine grain size—of the remaining metastable austenite in transformation-induced plasticity (TRIP) steels have been studied by choosing a model alloy Fe-0.2C-1.5Mn-1.5Si. An examination of the nucleus density required for an athermal nucleation mechanism indicates that such a mechanism needs a nucleus density as large as 2.5 · 1017 m−3 when the dispersed austenite grain size is down to 1 µm. Whether the random nucleation on various heterogeneities is likely to dominate the reaction kinetics depends on the heterogeneous embryo density. Chemical stabilization due to the enrichment of carbon in the retained austenite is the most important operational mechanism for the austenite retention. Based on the analysis of 57 engineering steels and some systematic experimental results, an exponential equation describing the influence of carbon concentration on the martensite start (M s) temperature has been determined to be M s (K)=273+545.8 · e −1.362w c(mass pct). A function describing the M s temperature and the energy change of the system has been found, which has been used to study the influence of the grain size on the M s temperature. The decrease in the grain size of the dispersed residual austenite gives rise to a significant decrease in the M s temperature when the grain size is as small as 0.1 µm. It is concluded that the influence of the grain size of the retained austenite can become an important factor in decreasing the M s temperature with respect to the TRIP steels.

Keywords

Ferrite Austenite Martensite Material Transaction Bainite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Zarei Hanzaki and S. Yue: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 583–89.Google Scholar
  2. 2.
    A. Zarei Hanzaki, P.D. Hodgson, and S. Yue: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 79–85.Google Scholar
  3. 3.
    J. Wang and S. van der Zwaag: Report No. P00.5.044, Netherlands Institute for Metals Research, Delft, 2000, pp. 1–21.Google Scholar
  4. 4.
    W. Bleck, J. Ohlert, and K. Papamantellos: Steel Res., 1999, vol. 70, pp. 472–97.Google Scholar
  5. 5.
    J. Wang and S. van der Zwaag: ECSC Steel Workshop on Advanced Hot Rolling Practice and Products, Düsseldorf, Oct. 2000.Google Scholar
  6. 6.
    V.F. Zackay, D. Parker, D. Fahr, and R. Bush: Trans. ASM, 1967, vol. 60, pp. 252–59.Google Scholar
  7. 7.
    J.R. Bradley, H.I. Aaronson, K.C. Russel, and W.C. Johnson: Metall. Trans. A, 1977, vol. 8A, pp. 1955–61.Google Scholar
  8. 8.
    S. Yamamoto, H. Yokoyama, K. Yamada, and M. Niikura: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1020–6.Google Scholar
  9. 9.
    S. Kajiwara, S. Ohno, and K. Honma: Phil. Mag. A, 1991, vol. 63, pp. 625–44.Google Scholar
  10. 10.
    M.R. Meyerson and S.J. Rosenburg: Trans. ASM, 1954, vol. 56, pp. 1225–50.Google Scholar
  11. 11.
    M.G.H. Wells: J. Iron Steel Inst., 1961, vol. 198, pp. 173–74.Google Scholar
  12. 12.
    A.R. Entwisle: Metall. Trans., 1971, vol. 2, pp. 2395–2407.Google Scholar
  13. 13.
    C.L. Magee: Metall. Trans., 1971, vol. 2, pp. 2419–30.CrossRefGoogle Scholar
  14. 14.
    R.E. Cech and D. Turnbull: Trans. AIME, 1956, vol. 206, pp. 124–32.Google Scholar
  15. 15.
    A. Zarei Hanzaki, P.D. Hodgson, and S. Yue: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2405–14.Google Scholar
  16. 16.
    J.C. Fisher, J.H. Hollomon, and D. Turnbull: Trans. AIME, 1949, vol. 185, pp. 691–700.Google Scholar
  17. 17.
    D.Q. Bai, A. Di Chiro, and S. Yue: Mater. Sci. Forum, 1998, vols. 284–286, pp. 253–60.Google Scholar
  18. 18.
    W.J. Botta, D. Negri, and A.R. Yavari: Mater. Sci. Forum, 1999, vols. 312–314, pp. 387–92.Google Scholar
  19. 19.
    M. Hillert and J. Ågren: Advances in Phase Transitions, J.D. Embury and G.R. Purdy, Oxford, United Kingdom, 1988, pp. 1–19.Google Scholar
  20. 20.
    J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1981, vol. 12A, pp. 1729–41.Google Scholar
  21. 21.
    J. Wang, P.J. van der Wolk, and S. van der Zwaag: Mater. Trans. JIM, 2000, vol. 41, pp. 769–76.Google Scholar
  22. 22.
    J. Wang and S. van der Zwaag: unpublished research.Google Scholar
  23. 23.
    G.N. Haidemenopoulos, M. Grujicic, G.B. Olson, and M. Cohen: J. Alloys Compounds, 1995, vol. 220, pp. 142–47.CrossRefGoogle Scholar
  24. 24.
    L. Kaufman and M. Cohen: Trans. AIME, 1956, vol. 206, pp. 1393–1401.Google Scholar
  25. 25.
    J. Wang, P.J. van der Wolk, and S. van der Zwaag: Mater. Trans. JIM, 2000, vol. 41, pp. 761–68.Google Scholar
  26. 26.
    R.H. Davies, A.T. Dinsdale, J.A. Gisby, S.M. Hodson, and T.I. Barry: MTData Handbook, National Physical Laboratory, Middlesex, United Kingdom, 1994.Google Scholar
  27. 27.
    H.I. Aaronson, W.T.J. Reynolds, G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.Google Scholar
  28. 28.
    H.C. Chen, H. Era, and M. Shimizu: Metall. Trans. A, 1989, vol. 20A, pp. 437–45.Google Scholar
  29. 29.
    J. Wang, H.S. Fang, Z.G. Yang, and Y.K. Zheng: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 992–1000.Google Scholar
  30. 30.
    J. Wang, P.J. van der Wolk, and S. van der Zwaag: J. Mater. Sci., 2000, vol. 35, pp. 4393–4404.CrossRefGoogle Scholar
  31. 31.
    S. van der Zwaag: Mater. Sci. Forum, 1998, vols. 284–286, pp. 27–38.CrossRefGoogle Scholar
  32. 32.
    J. Wang: Lattice Parameters of Phases in Steels, Ver. 0.7.3., Netherlands Institute for Metals Research, Delft, 2000.Google Scholar
  33. 33.
    E.O. Hall: Proc. Phys. Soc. Ser., 1951, vol. B64, pp. 747–53.CrossRefGoogle Scholar
  34. 34.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  35. 35.
    L. Kaufman and M. Cohen: Prog. J. Met. Phys., 1958, vol. 7, pp. 165–246.CrossRefGoogle Scholar
  36. 36.
    X.Q. Zhao and Y.F. Han: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 884–87.CrossRefGoogle Scholar
  37. 37.
    A.K. Jena and M.C. Chaturvedi: Phase Transformation in Materials, A Simon & Schuster Company, NJ, 1992.Google Scholar
  38. 38.
    J.R.C. Guimaraes and J.C. Gomes: Metall. Trans. A, 1979, vol. 10A, pp. 109–12.Google Scholar
  39. 39.
    R. Datta and V. Raghavan: Mater. Sci. Eng., 1982, vol. 55, pp. 239–46.CrossRefGoogle Scholar
  40. 40.
    G. Ghosh and V. Raghavan: Mater. Sci. Eng., 1986, vol. 79, pp. 223–31.CrossRefGoogle Scholar
  41. 41.
    V. Raghavan: in Martensite: a Tribute to Morris Cohen, G.B. Olson, W.S. Owen, and M. Cohen, eds., ASM, Metals Park, OH, 1992, pp. 197–225.Google Scholar
  42. 42.
    M. Grujicio and Y. Zhang: J. Mater. Sci., 2000, vol. 35, pp. 4635–47.CrossRefGoogle Scholar
  43. 43.
    W.Y.C. Chen and P.G. Winchell: Metall. Trans. A, 1976, vol. 7A, pp. 1177–82.Google Scholar
  44. 44.
    W.Y.C. Chen, E.N. Jones, and P.G. Winchell: Metall. Trans. A, 1978, vol. 9A, pp. 1659–61.Google Scholar
  45. 45.
    J.W. Christian: Martensite: Fundamentals and Technology, E.R. Petty, ed., Longman, London, 1970, pp. 11–42.Google Scholar
  46. 46.
    D. Turnbull and B. Vonnegut: I & E Chem., 1952, vol. 44, p. 1292.CrossRefGoogle Scholar
  47. 47.
    V. Raghavan and A.R. Entwisle: Physical Properties of Martensite and Bainite, ISI, London, 1965, pp. 29–37.Google Scholar
  48. 48.
    H.S. Fang, J. Wang, Z.G. Yang, C.M. Li, and Y.K. Zheng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1533–43.Google Scholar
  49. 49.
    G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.Google Scholar
  50. 50.
    K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.Google Scholar
  51. 51.
    W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.Google Scholar
  52. 52.
    C.Y. Kung and J.J. Rayment: Metall. Trans. A, 1982, vol. 13A, pp. 328–31.Google Scholar
  53. 53.
    P. Payson and H. Savage: Trans. ASM, 1944, vol. 33, pp. 261–80.Google Scholar
  54. 54.
    M.J. Bibby and J.G. Parr: J. Iron Steel Inst., 1964, vol. 202, pp. 100–04.Google Scholar
  55. 55.
    A.B. Greninger: Trans. ASM, 1942, vol. 30, pp. 1–26.Google Scholar
  56. 56.
    G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, pp. 3361–70.CrossRefGoogle Scholar
  57. 57.
    G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, pp. 3371–79.CrossRefGoogle Scholar
  58. 58.
    J.C. Fisher, J.H. Hollomon, and D. Turnbull: J. Appl. Phys., 1948, vol. 19, pp. 775–84.CrossRefGoogle Scholar
  59. 59.
    J.C. Fisher: Trans. AIME, 1949, vol. 185, pp. 688–90.Google Scholar
  60. 60.
    C. Zener: J. Appl. Phys., 1949, vol. 20, p. 950.CrossRefGoogle Scholar
  61. 61.
    G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1915–23.Google Scholar
  62. 62.
    J.W. Cahn and F. Larch: Acta Metall., 1984, vol. 32, pp. 1915–23.CrossRefGoogle Scholar
  63. 63.
    J.S. Bowles and J.K. Mackenzie: Acta Metall., 1954, vol. 2, pp. 127–37.Google Scholar
  64. 64.
    M.S. Wechsler, D.S. Lieberman, and T.A. Read: Trans. AIME, 1953, vol. 197, pp. 1503–15.Google Scholar
  65. 65.
    D.K. Felbeck and A.G. Atkins: Strength and Fracture of Engineering Solids, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984.Google Scholar
  66. 66.
    Z. Nishiyama: Martensitic Transformation, Academic Press, New York, NY, 1978.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2001

Authors and Affiliations

  • Jiajun Wang
    • 1
  • Sybrand Van Der Zwaag
    • 2
  1. 1.Philips Lighting B.V.MaarheezeThe Netherlands
  2. 2.the Department of Materials ScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations